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Introduction



This paper is about idea space:

≡ The spatial structure of inventions in the market for new ideas

To fix ideas, consider “idea production” of publishing in top economics journals

• Choosing Position: Which topic/idea to work on? Competition, spillovers• Rising Bar: New data, better methods, richer models, more robustness checks• Expanding Frontier: More papers, more teams, more & new topics
Research Questions:

Q1: What determines inventor positioning in idea space?
Q2: What are the consequences of inventor positioning?
Q3: How do we measure idea space positioning to test predictions?
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This Paper

A1: Spatial model of positioning in idea space

• Goal: Baseline spatial competition mechanism, complementing other factors• Differentiated ideas (adaptation costs → positioning matters) Salop 1979• Knowledge spillovers vs. competition Bloom et al. 2013, Dasgupta and Maskin 1987• Sunk and variable costs (burden of knowledge, fishing out) Jones 2009, Kortum 1997

A2: The model has surprising implications beyond just positioning...

A3: Validated measurement framework

• Systematic comparison using domain-specific tasks• GTE embeddings outperform TF-IDF; cover 1836–2023
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Roadmap

Part I: A Spatial Model of Idea Space

• What determines inventor positioning?
Part II: Model Predictions

• Comparative statics and growth implications• (Spoiler: They match facts beyond just inventor positioning)
Part III: Testing the Predictions

• Measurement challenge and validation• Evidence from 188 years of U.S. patents
3



Part I: A Theory of Invention in
Idea Space



Model Setup: Spatial Competition in Idea Space

Idea space: Circle of circumference H• H = size of market for new ideas• “Similar problems have similar solutions”
Idea producers (“inventors” or “inventions”):

• Choose: entry, location, quality qi, price pi• License non-rival ideas downstream• “Entry” = undertaking a project ( ̸= firm)• “Inventors” = Individuals, teams, or firms

Idea consumers (“downstream firms”):

• Distributed uniformly on circle• License ideas to boost their TFP

Inv A

Inv B

Inv C

Inv D

Firms
d

Idea Space(size H)

Market for new ideas as Salop (1979) circle
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Idea Consumers: Downstream Firms

Setup: Mass H of downstream firms uniformly distributed on circle• Each firm licenses one idea to improve productivity• Firm location = preferred technological variety

TFP from licensing: Firm at distance h from invention i achieves log TFP:
Ai(h) =Qi −τh

• Qi = realized quality of invention i (including spillovers)• τh = adaptation cost from technological mismatch (Bloom et al. 2013, Arora et al. 2021)
Net surplus: Firm chooses invention to maximize:

Surplus=Qi −τh
︸ ︷︷ ︸TFP gain

− pi
︸︷︷︸license fee

• Adaptation costs create product differentiation among inventions
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R&D Technology: Costs and Licensing

R&D investment: Inventor i produces idea of quality qi at cost:
c(qi) = 1

2γq
1+η
i

• η>0 ⇒ diminishing returns to R&D effort. Baseline: η= 1 (quadratic costs).• Captures “fishing out”: harder to improve idea quality Kortum 1997

Non-rival licensing:

• Ideas are non-rival—can license to multiple firms at zero marginal cost• Inventor charges license fee pi to each downstream firm in territory• Revenue = pi× (number of firms served)
Entry cost: Fixed cost f (sunk costs, setup costs)
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Knowledge Spillovers

Realized quality incorporates spillovers from neighbors:
Qi =qi+ β

2
�

1− dλ
�

qi−1+ β
2
�

1− dλ
�

qi+1

Parameters:• qi = own R&D investment• β ∈ (0,1) = spillover intensity• λ = spillover reach (spillovers vanish beyond distance λ)• d = distance to nearest neighbor
Key property: Spillovers decay with distance• At d=0: maximum spillover βq• At d=λ: spillovers vanish

Proximity→ spillovers, but also→ competition 7



Equilibrium Analysis
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Equilibrium: Pricing and Quality

Symmetric equilibrium: n inventions, equal spacing d=H/n, identical (p,q) Existence

Equilibrium pricing (standard differentiated-goods logic): p∗=τd

• Price proportional to spacing• Adaptation costs τ create pricing power through differentiation
Equilibrium quality (MR = MC for quality investment): q∗= d

γ• Quality proportional to spacing• Larger territories ⇒ higher quality investment• Key insight: adaptation costs make this necessary, not just profitable
Both price and quality rise as inventions spread out
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Free Entry Determines Equilibrium Spacing and Inventions

Zero-profit condition:

τd2
︸︷︷︸Revenue

−
d2
2γ
︸︷︷︸R&D cost

− f
︸︷︷︸Entry cost

=0

Solving for equilibrium spacing and number of inventions (n=H/d):

d∗=
√

√

√

f
τ− 1

2γ
⇒ n∗=H

√

√

√τ− 1
2γ
f

Symmetric equilibrium p∗, q∗, d∗, n∗ in terms of costs τ, γ, f, and market size H
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Everything Is Connected

Spacing Pricing Quality Varieties

d∗=
√

√

√

f
τ− 1

2γ
p∗=τd q∗= d

γ
n∗= Hd∗

Notice how both horizontal and vertical features are coupled by spatial forces:

• Spacing depends on costs (+fixed f, −variable γ, −adaptation τ)• Price and quality depend on spacing (p∗= f(d), q∗= f(d))• Number of varieties depends on idea space size H and costs
Positioning is tied to costs (cf. Q1) and quality and pricing too (Q2)
• The size of the market H matters for variety.• Key question: Could spacing, price and quality also depend on H?
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Expanding Idea Space

Smaller H
Larger H

10



Expanding Idea Space

Evidence:

• More U.S. patents: 500/year (1840s) → 350,000/year (2020s)• New technological domains: electricity, chemistry, semiconductors, software. . .• More firms doing R&D Hirschey et al. 2012• Growing scientific knowledge stock

Why does H grow?

• Knowledge accumulation opens new possibilities• Technology frontiers expand into new domains• Demand for new solutions increases with income, population
Our strategy: Ḣ exogenous—to establish baseline spatial competition mechanism

Question: How does equilibrium adjust as H grows?

11
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The Key Structural Relationship

Recall equilibrium spacing:

d∗=
√

√

√

f
τ− 1

2γ

As idea space H grows, which parameters might change?

• Adaptation cost τ: Mismatch penalty• R&D cost γ: Production technology• Entry cost f: Could respond to idea space size H ← Our focus

Specifying f(H):
• Different relationships f(H) generate different predictions (next slide)• In principle, τ(H) or γ(H) could also vary—though with less empirical support
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Four Scenarios: How Predictions Depend on f(H)

As idea space H grows, what happens to spacing d∗ and variety n∗?

Scenario Spacing d∗ Varieties n∗1. f constant unchanged ↑ (linear in H)2. f(H) decreasing (easier to invent) ↓ (clustering!) ↑↑ (faster growth)3. f(H) increasing (harder to invent) ↑ (spreading) ↑ (grows with H)4. f(H) increasing rapidly ↑↑ rapidly ↓ (fewer inventions)
Analysis of τ(H) or γ(H) follows similarly

Key insight:• Quality q∗=d/γ and price p∗=τd move with spacing• Growth implications differ dramatically across scenarios
So which scenario describes reality?
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f(H) Increasing: The Burden of Knowledge

Why might entry costs rise with idea space size? (f ′(H)>0)

Empirical evidence: Jones (2009)• Inventors getting older at first patent• Larger teams• More education• Longer training periods
Mechanism in idea space:• More prior art to master before contributing• More labor and managerial costs• Sophisticated tools/equipment required More effort to reach the frontier

In idea space: Entry costs rise with market size
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Our Model: Entry Costs Rise with Idea Space

Burden of knowledge implies:

f(H) =φHα, α>0,φ >0

Baseline calibration: α= 1 (linear)
• Robust to α ∈ (0,2)

This generates many predictions:

1. Spreading out: d∗=
√

√

√

φHα
τ− 1

2γ
— increases with H Proposition

2. and more. . .
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Part II: Model Predictions



Model Predictions to Evidence
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Model Predictions Match Three Categories of Literature Evidence

1. Positioning & Variety (Extensive Margin: dd/dH>0,dn/dH>0) Comparative statics
• ✓ Spreading out over time this paper, Kelly+ 2021, Chiopris 2024• ✓ More inventions, more firms, expanding idea space this paper, Hirschey+ 2012

2. Quality & Returns (Intensive Margin: dq/dH>0,dp/dH>0,d(p ·d)/dH>0)• ✓ More R&D investment per firm Hirschey+ 2012• ✓ Higher gross returns to patents Kogan+ 2017, Bessen+ 2018• ✓ Higher patent quality Hall+ 2005, Kelly+ 2021 Replication• ✓ R&D spillovers stable (dq/dH≈−1 ·dd/dH) Lucking+ 2019

3. Productivity Decline (explained next)• ✓ TFP growth decelerates Bloom+ 2020• ✓ R&D productivity declines Bloom+ 2020
Our spatial model unifies many streams of empirical evidence
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Declining R&D Productivity

Define aggregate R&D productivity (cf. Bloom et al. 2020)
Π≡

Agg TFP growthAgg R&D
Agg TFP growth=q

�

1+β(1− dλ )
�

− τd4

• Average ∆TFP delivered downstream• Doesn’t scale with n
Agg R&D= n ·

� 1
2γq2+φH
�

• Total R&D across n inventions• Scales with n
Key insight: As H expands, entry dilutes aggregate R&D cf. Howitt 1999, Peretto 1998, 2018

17



Decomposition Framework

Five forces reduce research productivity
• We will use this framework for quantitative decomposition

Forces reducing TFP:

d(Agg TFP growth)
dH =

dq
dH

�

1+β
�

1− d
λ

��

︸ ︷︷ ︸Quality investment
−

βq
λ

dd
dH
︸ ︷︷ ︸(1) Spillover attenuation

−
τ

4
dd
dH
︸ ︷︷ ︸(2) Adaptation drag

1. Spillover attenuation Knowledge flows weaken with distance2. Adaptation drag Downstream firms farther from inventions
Forces raising R&D:

d(Agg R&D)
dH =

dn
dH · [c(q)+ f(H)]
︸ ︷︷ ︸(5) Entry expansion

+ n ·c′(q)
︸ ︷︷ ︸(3) Fishing out

·
dq
dH
︸︷︷︸(5)∗

+ n · f′(H)
︸ ︷︷ ︸(4) Burden of knowledge

3. Fishing out Convex R&D costs4. Burden of knowledge Rising fixed costs5. Entry and territory expansion More inventions cover larger territories

18
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From Static Model to Growth Rates

If H grows at constant rate gH (Ḣ=gH ·H)⇒ constant growth in:

Variable Growth Rate Baseline (α= 1,η= 1)Spacing d gd= α
2gH

1
2gHQuality q gq=gd 1
2gHEntry n gn= (1− α2 )gH
1
2gHAgg R&D gR&D=gn+θgq+θηgq+(1−θ )αgH 3
2gH

θ ≡ Variable cost share Detailed growth equations General model
Static model

→ Comparative statics as H grows exogenously
→ Testable predictions

19



Part III: Testing Model
Predictions



From Growth Rates to Empirical Tests

Growth equations suggest empirical strategy:

Prediction 1: Spreading Out• Model: gd= 1
2gH >0• Empirical: Measure similarity over time → should decline• Data: 188 years of U.S. patents (1836-2023)

Prediction 2: Declining R&D Productivity• Model: Five forces decomposition• Empirical: Regress TFP and R&D growth on −∆Sim• Decompose: Spatial (40-60%) vs non-spatial forces
First challenge: How do we measure similarity? 20



Measuring Similarity in Idea Space

20



The Measurement Challenge

Same patent text, opposite conclusions:

• Left (GTE): Similarity declining— inventions spreading out• Right (TF-IDF): Similarity increasing— inventions clustering
Key Question: Which “map” of idea space should we trust? 21



Data: US Patent Claims, 1836–2023

Patent text corpus: Details
• Historical (1836–1975): ProQuest Patents Core (digitized full text)• Modern (1976–2023): USPTO PatentsView• Focus on claims — defines legal boundaries of invention

Multiple NLP representations tested:

• Traditional: TF-IDF (word frequency)• Modern neural embeddings: GTE, PaECTER, S-BERT, Doc2vec, USE, OpenAI
Similarity measure: Computation
• Cosine similarity between patent representations• Average pairwise similarity by year• Standardized by cross-sectional standard deviation Alternatives

22



Validation Framework: Three Complementary Tasks

Task Time Period Granularity ExpertisePatent Interferences 2001–2014 Identical USPTO examinersHuman Judgments 1850–1975 Continuous Lay annotatorsClassifications 1850–2023 Categorical Expert labels
Why multiple tasks?

• No single ground truth for “similarity”• Different aspects: legal identity vs. technological relatedness• Temporal robustness across 175+ years
Models performing well across all tasks are most reliable

23



Validation Results: Model Performance

Model Interferences Human ClassificationsPR AUC F10 Agreement Section Class
GTE 0.64 0.90 0.62 0.596 0.656(2) (1) (1) (2) (3)
PaECTER 0.65 0.90 0.51 0.590 0.672(1) (2) (3) (3) (1)
S-BERT 0.52 0.82 0.54 0.600 0.671(3) (3) (2) (1) (2)
TF-IDF 0.45 0.77 0.35 0.514 0.525(4) (4) (4) (4) (4)

• GTE and PaECTER consistently top performers• TF-IDF consistently worst (20–40% lower performance)• All beat random chance — but magnitudes differ dramatically 24



Model Selection: Why We Use GTE

GTE selected for main results because:

1. Temporal robustness — best on historical patents (1880–1920)2. Near-identical performance on interferences — our most demanding test3. Consistent across all tasks — ranks 1st or 2nd on 4/5 metrics
Why TF-IDF fails: Details
• Overweights period-specific language• Treats synonyms as unrelated (“velocipede” ̸= “bicycle”)• Would lead to opposite conclusions about our theory

Robustness checks with PaECTER, S-BERT, and ensemble measures

25



Prediction 1: Are Inventions Spreading Out?

25



Main Finding: Secular Decline in Patent Similarity

Average annual pairwise cosine similarity,
standardized by cross-sectional SD.
Indexed to 0 in 1900.

Using validated GTE embeddings:

∼1.5σ decline in patent similarity, 1836–2023
• Consistent with theory: inventions spreading out• Spreading out (d ↑) = Declining similarity (Sim ↓)• Multi-patent entity effect post-2000 (to come)

Confirms Prediction 1: Spreading Out
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Why Validation Matters: Comparing Representations

TF-IDF (worst performer):• ∼1.5σ increase—opposite conclusion!• Validation correctly discards
PaECTER, S-BERT (cf. GTE):• Similar ∼0.8σ decline, 1880–2000• Diverge pre-1880 & post-2000
Ensemble (avg of top models):• ∼1.0σ decline, 1836–2023

Validated methods agree; unvalidated
TF-IDF misleads
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Robustness: Accounting for Multi-Patent Entities

Concern: Post-2000 dynamics coincide with:business method patents, non-practicing entities,increased defensive patenting. Patents v entities• Multiple patents from same entity may be
similar but not independent.

Strategy: Sample 1 patent/entity–year
Result:• Decline persists after correction• Independent inventions still spreading out
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Robustness: Spreading Out Within Technology Classes

Alternative explanations: Changing patentoffice practice over time? Shifts across majortechnology areas?
Test: Within-class similarity by class “age”• Birth = Class first issued 50 patents• e.g., Combinatorial Chemistry 2001• Addresses compositional concerns Between

Finding: Within-class similarity declines asclasses mature
Spreading out is a dynamic process tied to field evolution
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Corroboration: Expanding Convex Hull

R&D regression
Is Idea Space Expanding?

Test:• 1024 GTE dimensions to 7 PC• Measure volume of convex hull
Result:• +0.5%/yr (6 PC: +0.4%/yr)• Likely under-estimate due todimensionality reduction
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Independent Corroboration: Declining Interference Rates

Patent interferences:• USPTO determination that two independentinventors made identical inventions• Direct measure of multiple invention (d=0)
Data: Purpose-digitized from 5 sources• Nat. Archives & Registers (1838–1900)• Published statistics (1950–1994)• eFOIA decisions (1998–2014) Ganguli et al. 2020
Finding: Interference rate declined over 150 years Same conclusion from

completely different data source
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Summary: Inventions Are Spreading Out

Robust evidence of spreading out:

✓ Main finding: 1.5σ decline in similarity, 1836–2023
✓ Decline extends after 2000 for independent inventions
✓ Robust to spatial scale (local and global)
✓ Robust to within vs. between class decomposition
✓ Appears within classes as they age
✓ Corroborated by interference rates (150 years)
✓ Idea space is expanding

Next: What are the consequences for research productivity?

31



Prediction 2:
Does Spreading Out Reduce R&D Productivity?

31



The Puzzle: Are Ideas Getting Harder to Find?

The research productivity decline:• Real R&D up >20× since 1930• TFP growth slowed by factor of 3×• R&D productivity decline >-5%/yr
Key question: Why does it take so much
more research effort to achieve the samerate of slower growth?

Bloom, Jones, Van Reenen and Webb, 2020
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Timing: Similarity Predicts TFP and R&D Growth

• Left: Declining similarity → lower TFP growth• Right: Declining similarity → higher R&D growth

Both patterns confirm Prediction 2
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TFP and Spreading Out
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From Theory to Estimation: TFP

TFP growth equation (from BGP):

gTFP= gq
�

1+β − βd
λ

�

︸ ︷︷ ︸Quality (with spillovers)
−

βq
λ
gd
︸ ︷︷ ︸Spillover attenuation

−
τ

4gd
︸︷︷︸Adaptation drag

Substitute equilibrium relationships for unobservables:• q∗=d/γ and dq∗/dt= (1/γ)(dd/dt) ⇒ gq=gd

gTFP= (1+β − τ4 )
︸ ︷︷ ︸

b1

·gd−β(1+ 1/γ)/λ
︸ ︷︷ ︸

b2

·d ·gd

Suggests the regression:• Observable proxy: gd ≈−∆Sim (small annual changes in standardized measure)
∆ log(TFP)t=b0+b1 · (−∆Sim)t+b2 · (−∆Sim) · (−Simt−1)+εt 34



From Theory to Estimation: TFP

Regression Specification:

∆ log(TFP)t=b0+b1 · (−∆Sim)t+b2 · (−∆Sim) · (−Simt−1)+b3 · t+εt
Data:

• TFP and Real R&D Inputs, 1948–2015 (Bloom et al., 2020)
Predictions and interpretation:

• b1 ≶0: Effect on TFP growth from ↑ quality scaling net of ↓ adaptation costs• b2 <0: Spillover attenuation and reduced marginal return to R&D• b3: Time trend controls for factors not explicit in the model
35



TFP Growth and Technological Distance

Annual 3-Year 5-Year
b1 :−1×∆Sim −0.169∗∗∗ −0.171∗∗∗ −0.278∗∗∗ −0.269∗∗∗(0.057) (0.083) (0.095) (0.098)
b2 : (−1×∆Sim)× (−1×Simt−1) — −0.015 −0.408 −0.571∗(0.342) (0.320) (0.312)
Implied TFP drag from spreading out (∆Sim, %/yr):1948 (Sim =0.35) −0.08 −0.08 −0.07 −0.041991 (Sim =0, baseline) −0.08 −0.09 −0.14 −0.16

Validation: Implied drag -0.16%/yr from ∆Sim consistent with quasi-experimentalcross-sectional elasticity of -0.15%/yr ✓ Bloom et al. 2013, Lucking et al. 2019 Details
Contribution to TFP deceleration: Drag worsened -0.04%/yr (1948) → -0.14%/yr(2015). Change = 0.10 pp = 7% of 1.4 pp total TFP deceleration. Decomposition
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R&D and Spreading Out
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From Theory to Estimation: R&D

R&D growth equation (from BGP):

gR&D= gn
︸︷︷︸Entry

+ θ (1+η)gq
︸ ︷︷ ︸Quality (incl. fishing out)

+ (1−θ )gf
︸ ︷︷ ︸Rising fixed costs

Substitute equilibrium relationships:

gR&D= [1+α(1−θ )]gH
︸ ︷︷ ︸

a0

+[θ (1+η)− 1]
︸ ︷︷ ︸

a1

gd

Regression specification:

gR&D,t= a0+a1 · (−∆Sim)t+a2 · t+εt

• a2 captures (unmodeled) acceleration in idea space growth (but: â2 ≈0)
37



Identification of Structural Parameters

Identification of structural parameters:

a1= θ (1+η)− 1
⇓

θ =
a1+ 1
1+η(variable cost share)

a0= [1+α(1−θ )]gH
⇓

gH=
a0

1+α(1−θ )(idea space growth)
Baseline: α= 1, η= 1. Later: Calibration w/ quasi-experimental η̂ and estimate of α.

Regression coefficients→ structural parameters (θ ,gH)
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R&D Growth and Technological Distance

Annual 3-Year 5-Year
a1: −1×∆Sim 0.165 0.448∗∗ 0.438∗(0.177) (0.219) (0.244)
a0: Constant 0.034∗∗∗ 0.102∗∗∗ 0.173∗∗∗(0.006) (0.013) (0.018)Implied θ (variable cost share) 0.58 0.72 0.72Implied gH (idea space growth) 2.4%/yr 2.7%/yr 2.7%/yr

Validation:• θ = 72% aligns with NSF survey data (labor = 69% of R&D) ✓• gH=2.7%/yr consistent with patent embedding volume growth ✓• BGP consistency: Model predicts gd/gR&D= 1/3; In data, −∆Sim/gR&D=0.31 ✓ 39



Growth Accounting
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The Research Productivity Decline

Research productivity:

Π≡gTFP/Agg R&D (TFP growth per unit R&D)
The decline (1948–2015):

• TFP growth fell: 2.1%/yr → 0.7%/yr (ggTFP =−1.6%/yr)• R&D spending grew: 4.0%/yr
gΠ=ggTFP −gR&D =−1.6%−4.0%= −5.6%/yr

Goal: Decompose this decline into spatial and non-spatial components

40



From Regressions to Parameters

What we estimated from R&D regression:

Parameter Value Source
θ (variable cost share) 0.72 R&D regression coefficient a2 (η= 1)
gH (idea space growth) 2.7%/yr R&D regression constant a0 (α= 1)

What we assume (baseline):

Parameter Value Interpretation
α (entry cost curvature) 1.0 Entry costs scale linearly with H
η (R&D cost curvature) 1.0 Quadratic R&D costs
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Decomposing the R&D Productivity Decline

Model implies: gd= α
2gH= 1.35%/yr (spreading rate if α= 1)

Component Contribution Classification Comment

TFP deceleration −1.6%/yrSpatial drag worsened −0.11%/yr Spatial 7% of deceleration TFP regressionUnmodeled factors −1.49%/yr Non-spatial

R&D growth +4.0%/yrEntry expansion (1− α2 )gH +1.35%/yr Spatial (new inventions)Quality scaling (θ α2gH) +0.97%/yr Spatial (larger territories; TFP units)Fishing out (θη α2gH) +0.97%/yr Non-spatial (convex costs)Burden of knowledge (1−θ )(αgH) +0.76%/yr Non-spatial (rising fixed costs)Unmodeled factors −0.05%/yr Non-spatial
Total decline −5.6%/yr

Spatial contribution −2.43%/yr 43%Non-spatial contribution −3.17%/yr 57%
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Robustness: Spatial Share Increases with Better Calibration

Baseline assumptions: α= 1, η= 1
Alternative calibration:• η=0.625: Guceri-Liu (2019)• θ =0.89: From R&D regression a2• α=0.76: Constrain sum to 4.0%• gH=3.2%/yr: From R&D regression a0• gd= α

2gH= 1.2%/yr

Alternative decomposition:

Baseline Alternative

Entry expansion 1.35%/yr 1.98%/yrQuality scaling 0.97%/yr 1.08%/yrFishing out 0.97%/yr 0.67%/yrBurden of knowledge 0.76%/yr 0.27%/yr
Sum 4.05%/yr 4.00%/yr
Spatial share 43% 57%

Conservative baseline; higher spatial share with alternative calibration• η=0.625< 1: R&D costs grow sub-quadratically with q• α̂=0.76< 1: Entry costs grow sub-linearly with H• Entry expansion (1.98%) < patent growth (3.9%) ⇒ ↓ ideas per patent (-1.9%/yr)
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Conclusion



Summary

1. Theory:

• Spatial model predicts as idea space expands, inventions spread out• Space unifies new & old evidence: horizontal, vertical, R&D productivity
2. Measurement: Validated NLP methods using domain-specific tasks
• Representation choice fundamentally affects conclusions• GTE outperforms traditional workhorse TF-IDF

3. Empirics: Nearly 2 centuries of spreading out in expanding idea space
• Robust across multiple tests and data sources• Spatial forces can explain 40–60% of R&D productivity decline
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Backup Slides



Backup: Comparative Statics Derivations

ReturnSpreading out: From zero-profit condition d2(τ− 1
2γ ) =φH:

dd
dH =

φ

2d(τ− 1
2γ )

=
φ

dR/dd−dc/dd >0

Rising quality and prices:
dq
dH =

1
γ

dd
dH >0,

dp
dH =τ

dd
dH >0

Rising entry:
dn
dH =

1
d −
H
d2
dd
dH >0 under spreading-out condition

Declining productivity:
dρ
dH <0,

dΠ
dH <0 44



Backup: Spreading Out

Return
Proposition (Spreading Out)For τγ> 12 , equilibrium spacing increases with opportunity space: dd∗dH >0.Inventions become less similar over time.

Why is spreading out profitable?

d

MR
MCNet gain

spacing

Marginal revenue of expanding territory:• Revenue R=τd2 ⇒ MR =2τd
Marginal cost of expanding territory:• Need higher quality: q=d/γ• MC =d/γ
Spreading profitable when:

MR>MC ⇒ τγ>
1
2

Adaptation costs must create sufficient pricing power 44



Backup: Model Equations

Fixed cost (burden of knowledge): f(H) =φHα

R&D cost: c(qi) = 1
2γq

1+η
i

Realized quality (with spillovers): Qi =qi+ 1
2β
�

1− dλ
�

(qi−1+qi+1)

Baseline model: α= 1,η= 1

Equilibrium pricing and quality: p∗=τd, q∗= d
γ

Equilibrium spacing: d∗(H) =
s

φH
τ− 12γ

Equilibrium entry: n∗= H
d∗

Equilibrium revenue: R∗=p∗ ·d∗=τd2
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Backup: Robustness to Entry Cost Curvature

ReturnWith f(H) =φHα, equilibrium spacing satisfies d∝Hα/2:
Condition Entry Growth Prediction

0<α<2 gn= (1− α2 )gH >0 Entry grows ✓
α=2 gn=0 Entry stagnates
α>2 gn <0 Entry declines ×

Main results robust for α<2:• Spreading out: gd= α
2gH >0 for any α>0• Declining R&D productivity: Holds throughout range• Higher α → faster spreading, but lower spatial share of productivity decline

Counterfactual boundary: Patent counts grow over time, ruling out α≥2 44



Backup: TFP and R&D Growth Equations

Growth rates TFP regression R&D regression
TFP growth:

gTFP= gq
�

1+β − βd
λ

�

︸ ︷︷ ︸Quality (with spillovers)
−

βq
λ
gd
︸ ︷︷ ︸Spillover attenuation

−
τ

4gd
︸︷︷︸Adaptation drag

R&D growth:
gR&D= gn
︸︷︷︸Entry

+ θ ·gq
︸ ︷︷ ︸Quality scaling

+ θ ·gq
︸ ︷︷ ︸Fishing out

+ (1−θ )gf
︸ ︷︷ ︸Burden of knowledgewhere θ = variable cost share; α = 1, η = 1

The asymmetry:• TFP: grows with gq minus spatial drags• R&D: grows with gq plus entry (gn) plus fixed costs (gf)
gR&D >gTFP ⇒ Research productivity declines 44



Backup: Growth Equations with General Cost Curvatures

Growth Rates Decomposition
Component General Baseline (α= 1,η= 1)Entry cost f(H) =φHα φHR&D cost c(q) = 1

2γq1+η
1
2γq2Spacing growth gd= α

2gH
1
2gHQuality growth gq=gd 1
2gHEntry growth gn= (1− α2 )gH
1
2gHFixed cost growth gf =αgH gH

R&D growth equation:

gR&D= (1− α2 )gH
︸ ︷︷ ︸Entry

+ θα
2 gH
︸ ︷︷ ︸Quality scaling

+ θηα
2 gH
︸ ︷︷ ︸Fishing out

+ (1−θ )αgH
︸ ︷︷ ︸Burden of knowledge
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Log TFP Specification

ReturnWhy linear in log TFP? Ai(h) =Qi −τh

Standard in spatial competition (Salop 1979):• Idea consumers have preferences linear in quality net of distance costs• Ai(h) interpreted as log TFP ⇒ firms care about proportional productivity gains
Microfoundation: Each downstream firm has one unit of fixed input ℓ and produces:

y= eA · ℓWith output price = 1 and ℓ= 1, profit is π= eA. Willingness to pay for technologydelivering incremental log TFP A (relative to baseline e0= 1):
WTP= eA− 1≈A (first-order Taylor approximation)

Accuracy: For annual TFP increments (A≈0.015/year), approximation error <0.01%

Advantage: Predictions directly comparable to empirical TFP elasticities (Bloom et al.2013) and growth accounting (Bloom et al. 2020) 44



Backup: Equilibrium Existence Conditions

ReturnSpreading-out condition:
τγ>

1
2Marginal revenue of expanding territory exceeds marginal cost.

Second-order conditions:• Pricing: ∂ 2R/∂ p2 <0 (satisfied)• Quality: ∂ 2π/∂ q2=−γ<0 (satisfied)• No spatial deviation (verified in paper)
Additional conditions:• Spillover reach: d<λ (spillovers active)• Full coverage: All downstream firms adopt some technology 44



Backup: Interference Validation Task

ReturnPatent interferences (2001–2014):• First to invent: USPTO proceeding for multiple applicants w/ identical claims• Provides ground truth for “identical” similarity• 322 true interfering pairs among 96,580 application pairs
Economic intuition: Examiner ranks pairs by similarity, investigates above threshold• Higher threshold → fewer false positives but miss true interferences• Lower threshold → catch more but burden staff with unnecessary investigations
Metrics:• F10: Weights recall 10× more than precision (missing interferences is costly)• PR AUC: Precision-Recall area under curve across all thresholds
Key result: GTE, PaECTER, OpenAI retrieve ∼90% of true interferences with 2–5×fewer false positives than TF-IDF/S-BERT 44



Backup: Human Annotation Task

ReturnHistorical patents (1850–1975):• Sampled patent pairs that each model ranked at least 50 percentiles apart• Annotators rank relative similarity of 2 patent pairs• Tests temporal robustness (historical language): Oversample 1880–1920
Task: Do model rankings agree with human rankings?• For each patent, rank others by similarity• Compare model ranking to human ranking
Metric: Agreement coefficient from regressionHuman Rank=α+β ·Model Rank+εHigher β = better agreement
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Backup: Classification Validation Task

ReturnUSPTO Classifications (1850–2023):

• CPC technology codes assigned by examiners• Section level (8 categories) and Class level (120+ categories)• Captures expert judgment of technological relatedness
Task: Predict whether patent pair shares classification
• Same Section (coarse): 8 top-level categories• Same Class (fine): 3-digit classification

Metric: ROC AUC
• Area under Receiver Operating Characteristic curve• 0.5 = random, 1.0 = perfect
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Backup: Why TF-IDF Fails

ReturnTF-IDF overweights period-specific language:• Treats “velocipede” (1880s) and “bicycle” (modern) as unrelated• Period-specific terminology dominates similarity scores• Creates spurious correlation with time
Example: 1880 velocipede patent• TF-IDF: High similarity to other 1880s patents (shared vocabulary)• GTE: High similarity to modern bicycle patents (shared concepts)
Evidence:• TF-IDF similarity correlates with word overlap• GTE similarity correlates with conceptual similarity• Google Ngrams shows vocabulary shifts over time 44



Backup: Similarity at Different Spatial Scales

Return
Weighted average: ≡ 1n

∑n
i=1

∑

j ̸=i(1−dij)e
−γdij

∑

j ̸=i e
−γdijwhere γ from 0 (global) to 50 (local)• Key finding: Similar declining trendsacross all spatial scales• Model predictions concern averages— important to verify pattern holdsacross distribution• Post-2000 arrest slightly stronger atlocal scales (consistent with entitycorrection)
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Backup: Similarity at Different Quantiles

Return
Similarity at Different Quantiles:• 50 quantiles of pairwise similarity ineach year• Secular decline is robust across allquantiles• Post-2000 increase in similarity isslightly faster for higher quantiles
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Backup: Growth in Patents vs. Patenting Entities

Return
• Number of issued utility patents andunique patenting entities per year• Divergence after 1999: substantialgrowth in patents per entity• Driven by business method patentsand non-practicing entities• Motivates sampling 1 patent per entityper year for robustness
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Backup: Within vs. Between Technology Classes

Return

Within-class similarity Between-class similarity

• Addresses compositional concern: Decline not driven by shifts acrosstechnology fields — spreading out occurs within established classes 44



Backup: Alternative Normalizations

Return
Main specification: Standardize by annual cross-sectional SD
Robustness checks:

1. Time-invariant global SD → Nearly identical results2. Raw similarity (no standardization) → Same qualitative pattern3. Different sample sizes per year → Robust
Why standardize?

• Different representations have different scales• No intrinsic economic interpretation of raw similarity• SD provides meaningful units for comparison
44



Backup: Kelly et al. Breakthrough Replication

Return

TF-IDF

GTE

Kelly et al. (2021): Identify “breakthrough”patents using similarity to future patents
Our replication with GTE:• Qualitative conclusions align (morebreakthroughs today)• Quantitative results more robust (lesssensitivity to methodological choices)• TF-IDF produces noisier breakthroughclassification
Implication: Validated similarity measuresimprove downstream analyses
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Backup: Patent Corpus Details

ReturnHistorical (1836–1975): ProQuest Patents Core• OCR-digitized patent images• Full text of claims extracted• Quality varies with original document condition
Modern (1976–2023): USPTO PatentsView• Machine-readable full text• Structured data with claim parsing• Consistent quality
Potential discontinuity at 1976:• Some evidence of break in levels• Trends consistent across periods• Results robust to excluding transition years
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Backup: Computing Similarity Efficiently

ReturnChallenge: O(N2) pairwise comparisons infeasible for millions of patents
Solution: For unit-normalized vectors, average cosine similarity reduces to:

S̄= 1
N(N− 1)
∑

i ̸=j
cos(vi,vj) =

∥
∑

ivi∥2−N
N(N− 1)

Complexity: O(N ·d) where d = embedding dimension
Implementation:1. Normalize all vectors to unit length2. Sum vectors: S=∑ivi3. Compute ∥S∥24. Apply formula
Cross-sectional SD: Subsample up to 10,000 patents/year
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Example: Register of Interferences (1890)

Return
Purpose-digitized from National
Archives:• USPTO Registers of Interferences,1864–1900• 19,388 interference casesdocumented• Average 504 annual terminations
Example cases (Jan 7, 1890):• Ehrlich v. Lawton: Roll paper cutters• Blaine v. Hadley: Corn harvesters
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Backup: Validation of Spillover Elasticity

Return
Quasi-experimental estimates of R&D spillovers Bloom et al. 2013, Lucking et al. 2019
• Firm-level TFP elasticity to shocks to spillover pool• SPILLTECH ≡ sum of neighbors’ R&D, weighted by idea distance• IV: State R&D tax credit shocks

Ingredients:

• Bloom et al. 2013 (1981-2001): β̂ = 0.206• Standard deviation log(SPILLTECH) = 1.04)• Avg change in similarity (Bloom sample period): -0.007σ/yr

Implied TFP drag from average rate of spreading out:

• -0.007 × 1.04 × 0.206 = -0.15%/yr ✓
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