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This paper is about idea space:
= The spatial structure of inventions in the market for new ideas

To fix ideas, consider “idea production” of publishing in top economics journals
« Choosing Position: Which topic/idea to work on? Competition, spillovers
« Rising Bar: New data, better methods, richer models, more robustness checks

« Expanding Frontier: More papers, more teams, more & new topics

Research Questions:

Q1: What determines inventor positioning in idea space?

Q2: What are the consequences of inventor positioning?

Q3: How do we measure idea space positioning to test predictions?
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« Sunk and variable costs (burden of knowledge, fishing out) Jones 2009, Kortum 1997
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A1: Spatial model of positioning in idea space

« Goal: Baseline spatial competition mechanism, complementing other factors
« Differentiated ideas (adaptation costs — positioning matters) salop 1979
» Knowledge spillovers vs. competition Bioom et al. 2013, Dasgupta and Maskin 1987
« Sunk and variable costs (burden of knowledge, fishing out) Jones 2009, Kortum 1997

A2: The model has surprising implications beyond just positioning...

A3: Validated measurement framework

« Systematic comparison using domain-specific tasks
« GTE embeddings outperform TF-IDF; cover 1836-2023



Part I: A Spatial Model of Idea Space

« What determines inventor positioning?

Part ll: Model Predictions

« Comparative statics and growth implications
» (Spoiler: They match facts beyond just inventor positioning)

Part lll: Testing the Predictions

» Measurement challenge and validation
« Evidence from 188 years of U.S. patents



Part I: A Theory of Invention in
Idea Space
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Model Setup: Spatial Competition in Idea Space

Idea space: Circle of circumference H
» H = size of market for new ideas
« “Similar problems have similar solutions”

Idea producers (“inventors” or “inventions”):
« Choose: entry, location, quality q;, price p; Idea Space

. . . (size H)
o License non-rival ideas downstream

« “Entry” = undertaking a project (# firm)

e “Inventors” = Individuals, teams, or firms

Inv D

Idea consumers (“downstream firms”):

Market for new ideas as Salop (1979) circle

« Distributed uniformly on circle
» License ideas to boost their TFP
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Idea Consumers: Downstream Firms

Setup: Mass H of downstream firms uniformly distributed on circle

« Each firm licenses one idea to improve productivity
« Firm location = preferred technological variety

TFP from licensing: Firm at distance h from invention i achieves log TFP: o
Ai(h)=Q;—rh
« Q; = realized quality of invention i (including spillovers)
« th = adaptation cost from technological mismatch (Bioom et al. 2013, Arora et al. 2021)

Net surplus: Firm chooses invention to maximize:

Surplus=Qj—th— p;
N—— ~—~—
TFP gain license fee

« Adaptation costs create product differentiation among inventions
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« Captures “fishing out” harder to improve idea quality kortum 1997
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R&D Technology: Costs and Licensing

R&D investment: Inventor i produces idea of quality g; at cost:

c(a) = 379;

1+n

« >0 = diminishing returns to R&D effort. Baseline: n =1 (quadratic costs).
« Captures “fishing out” harder to improve idea quality kortum 1997

Non-rival licensing:

« |deas are non-rival—can license to multiple firms at zero marginal cost
« Inventor charges license fee p; to each downstream firm in territory
» Revenue = p;x (number of firms served)

Entry cost: Fixed cost f (sunk costs, setup costs)



Knowledge Spillovers

Realized quality incorporates spillovers from neighbors:

Q= q;+§(1 —9)qi4 +%(1 —9)qis1
Parameters:

e g; = own R&D investment
e B <(0,1) = spillover intensity
» A = spillover reach (spillovers vanish beyond distance 1)
« d = distance to nearest neighbor
Key property: Spillovers decay with distance

« At d=0: maximum spillover q
« At d=A: spillovers vanish

Proximity — spillovers, but also — competition



Equilibrium Analysis
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Equilibrium: Pricing and Quality

Symmetric equilibrium: n inventions, equal spacing d = H/n, identical (p,q)

Equilibrium pricing (standard differentiated-goods logic): | p*=rd

 Price proportional to spacing
« Adaptation costs 7 create pricing power through differentiation

Equilibrium quality (MR = MC for quality investment): | qg* :g

» Quality proportional to spacing
« Larger territories = higher quality investment
» Key insight: adaptation costs make this necessary, not just profitable

Both price and quality rise as inventions spread out



Free Entry Determines Equilibrium Spacing and Inventions

Zero-profit condition:

d2
> - — — f =0
Revenue ~—~— Entry cost
R&D cost

Solving for equilibrium spacing and number of inventions (n = H/d):

Symmetric equilibrium p*, g*, d*, n* in terms of costs 7, y, f, and market size H
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Everything Is Connected

Spacing Pricing Quality Varieties

f1 p*=1td q*:g n* H

d*: = —
T_Z_y Y a-

Notice how both horizontal and vertical features are coupled by spatial forces:

« Spacing depends on costs (+fixed f, —variable y, —adaptation )
« Price and quality depend on spacing (p* =f(d), g* =f(d))
« Number of varieties depends on idea space size H and costs

Positioning is tied to costs (cf. Q1) and quality and pricing too (Q2)

» The size of the market H matters for variety.
« Key question: Could spacing, price and quality also depend on H?



Expanding Idea Space

Smaller H
Larger H
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Expanding Idea Space

Evidence:

« More U.S. patents: 500/year (1840s) — 350,000/year (2020s)

« New technological domains: electricity, chemistry, semiconductors, software. ..
« More firms doing R&D Hirschey et al. 2012

« Growing scientific knowledge stock

Why does H grow?

» Knowledge accumulation opens new possibilities
« Technology frontiers expand into new domains
« Demand for new solutions increases with income, population

Our strategy: H exogenous—to establish baseline spatial competition mechanism
Question: How does equilibrium adjust as H grows?

n
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As idea space H grows, which parameters might change?

« Adaptation cost 7: Mismatch penalty
« R&D cost y: Production technology
» Entry cost f: Could respond to idea space size H — Our focus



The Key Structural Relationship

Recall equilibrium spacing:
f

1
G

d =

As idea space H grows, which parameters might change?

« Adaptation cost 7: Mismatch penalty

« R&D cost y: Production technology

» Entry cost f: Could respond to idea space size H — Our focus
Specifying f(H):

- Different relationships f(H) generate different predictions (next slide)
« In principle, T(H) or y(H) could also vary—though with less empirical support



Four Scenarios: How Predictions Depend on f(H)

As idea space H grows, what happens to spacing d* and variety n*?

Scenario Spacing d* Varieties n*

1. f constant unchanged 1 (linear in H)

2. f(H) decreasing (easier to invent) | (clustering!) 17 (faster growth)
3. f(H) increasing (harder to invent) 1 (spreading) 7 (grows with H)
4. f(H) increasing rapidly 17 rapidly | (fewer inventions)

Analysis of ©(H) or y(H) follows similarly

13
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Four Scenarios: How Predictions Depend on f(H)

As idea space H grows, what happens to spacing d* and variety n*?

Scenario Spacing d* Varieties n*

1. f constant unchanged 1 (linear in H)

2. f(H) decreasing (easier to invent) | (clustering!) 17 (faster growth)
3. f(H) increasing (harder to invent) 1 (spreading) 7 (grows with H)
4. f(H) increasing rapidly 17 rapidly | (fewer inventions)

Analysis of ©(H) or y(H) follows similarly

Key insight:

« Quality g*=d/y and price p* = 7d move with spacing
« Growth implications differ dramatically across scenarios

So which scenario describes reality?
13
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f(H) Increasing: The Burden of Knowledge

Why might entry costs rise with idea space size? (f'(H)>0)

Empirical evidence: Jones (2009
« Inventors getting older at first patent
» Larger teams
« More education
« Longer training periods
Mechanism in idea space:
« More prior art to master before contributing
« More labor and managerial costs More effort to reach the frontier
« Sophisticated tools/equipment required

In idea space: Entry costs rise with market size
14
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Our Model: Entry Costs Rise with Idea Space

Burden of knowledge implies:

f(H)=¢H*, a>0,¢>0

Baseline calibration: ¢« =1 (linear)
« Robust to a€(0,2) o

This generates many predictions:

Ha
1. Spreading out: | d* = 4 — |— increases with H
JT_Z

2. and more...
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1. Positioning & Variety  (Extensive Margin: dd/dH > 0,dn/dH > 0)

» v Spreading out over time  this paper, Kelly+ 2021, Chiopris 2024
« v More inventions, more firms, expanding idea space  this paper, Hirschey+ 2012

2. Quality & Returns (Intensive Margin: dq/dH > 0,dp/dH > 0,d(p-d)/dH > 0)

« v More R&D investment per firm  Hirschey+ 2012
» v Higher gross returns to patents kogan+ 2017, Bessen+ 2018
«  Higher patent quality  Hai+ 2005, Kelly+ 2021

» v R&D spillovers stable (dq/dH~—1-dd/dH)  Lucking+2019
3. Productivity Decline (explained next)

o v TFP growth decelerates  Bloom+ 2020
« v R&D productivity declines  Bloom+ 2020

Our spatial model unifies many streams of empirical evidence



Declining R&D Productivity

Define aggregate R&D productivity (cf Bloom et al 2020)
Agg TFP growth

M= —"199 R&D
o d zd _ 1 2
Agg TFP growth =g[1+6(1-$)]- % Agg R&D =n-[57q? + ¢H]
» Average ATFP delivered downstream » Total R&D across n inventions
« Doesn’t scale with n » Scales with n

Key insight: As H expands, entry dilutes aggregate R&D cf. Howitt 1999, Peretto 1998, 2018
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Five forces reduce research productivity

« We will use this framework for quantitative decomposition
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Decomposition Framework

Five forces reduce research productivity
« We will use this framework for quantitative decomposition

Forces reducing TFP:

d(Agg TFP growth) ‘@[”ﬁ(“gﬂ— pgad _ zdd
dH T dH A A dH 4 dH
e N

Quality investment (1) Spillover attenuation  (2) Adaptation drag

1. Spillover attenuation Knowledge flows weaken with distance
2. Adaptation drag Downstream firms farther from inventions

Forces raising R&D:

(3) Fishing out (4) Burden of knowledge

——
(5) Entry expansion (5)*

3. Fishing out Convex R&D costs
4. Burden of knowledge Rising fixed costs
5. Entry and territory expansion More inventions cover larger territories



From Static Model to Growth Rates

If H grows at constant rate gy (H= gy - H) = constant growth in:

Variable Growth Rate Baseline (a=1,n=1)
Spacing d 9a=$59H 29+
Quality g Jq=9d 29H
Entry n gn=>1-%)gn 39
Agg R&D  grep=0n+09q+0ngq+(1—0)agy 39

0 = Variable cost share GEEEILERlEUGEELERE » General model

Static model
— Comparative statics as H grows exogenously
— Testable predictions



Part lll: Testing Model
Predictions




From Growth Rates to Empirical Tests

Growth equations suggest empirical strategy:

Prediction 1: Spreading Out

« Model: gg=491>0
« Empirical: Measure similarity over time — should decline
» Data: 188 years of U.S. patents (1836-2023)

Prediction 2: Declining R&D Productivity

« Model: Five forces decomposition
« Empirical: Regress TFP and R&D growth on —ASim
« Decompose: Spatial (40-60%) vs non-spatial forces

First challenge: How do we measure similarity? 20



Measuring Similarity in Idea Space



The Measurement Challenge

Same patent text, opposite conclusions:

GTE TF-IDF

050 050

e
8
°
8

050

Standardized similarity
13
@
2

]
z

150 -1.50
1836 1883 1930 1977 2024 1836 1883 1930 1977 2024

« Left (GTE): Similarity declining — inventions spreading out
« Right (TF-IDF): Similarity increasing — inventions clustering

Key Question: Which “map” of idea space should we trust?
21



Data: US Patent Claims, 1836-2023

Patent text corpus:

 Historical (1836-1975): ProQuest Patents Core (digitized full text)
 Modern (1976-2023): USPTO PatentsView
« Focus on claims — defines legal boundaries of invention

Multiple NLP representations tested:

 Traditional: TF-IDF (word frequency)
« Modern neural embeddings: GTE, PaECTER, S-BERT, Doc2vec, USE, OpenAl

Similarity measure:

» Cosine similarity between patent representations
» Average pairwise similarity by year
« Standardized by cross-sectional standard deviation

22



Validation Framework: Three Complementary Tasks

Task Time Period Granularity Expertise

Patent Interferences  2001-2014 Identical USPTO examiners @
Human Judgments 1850-1975  Continuous Lay annotators o
Classifications 1850-2023  Categorical Expert labels o

Why multiple tasks?

« No single ground truth for “similarity”

- Different aspects: legal identity vs. technological relatedness
« Temporal robustness across 175+ years

Models performing well across all tasks are most reliable

23



Validation Results: Model Performance

Model Interferences Human Classifications

PRAUC F10 Agreement Section Class

GTE 0.64 0.90 0.62 0.596 0.656
(2) (M M (2) (3)

PaECTER 0.65 0.90 0.51 0.590 0.672
(1) (2) (3) (3) M

S-BERT 0.52 0.82 0.54 0.600 0.671
(3) (3) (2) M (2)

TF-IDF 0.45 0.77 0.35 0.514 0.525
(4) (4) (4) (4) (4)

« GTE and PaECTER consistently top performers
» TF-IDF consistently worst (20-40% lower performance)

« All beat random chance — but magnitudes differ dramatically
24



Model Selection: Why We Use GTE

GTE selected for main results because:

1. Temporal robustness — best on historical patents (1880-1920)
2. Near-identical performance on interferences — our most demanding test
3. Consistent across all tasks — ranks 1st or 2nd on 4/5 metrics

Why TF-IDF fails:

« Overweights period-specific language
« Treats synonyms as unrelated (“velocipede” # “bicycle”)
» Would lead to opposite conclusions about our theory

Robustness checks with PaECTER, S-BERT, and ensemble measures

25



Prediction 1: Are Inventions Spreading Out?



Main Finding: Secular Decline in Patent Similarity

GTE

100 Using validated GTE embeddings:

~1.50 decline in patent similarity, 1836-2023

0.50
« Consistent with theory: inventions spreading out
0001 » Spreading out (d T) = Declining similarity (Sim |)
« Multi-patent entity effect post-2000 (to come)

Standardized similarity

-0.50

Confirms Prediction 1: Spreading Out

-1.00+

1 556 1 8‘88 1 9‘30 1 9‘77 20‘24
Average annual pairwise cosine similarity,
standardized by cross-sectional SD.

Indexed to 0 in 1900. 26



Why Validation Matters: Comparing Representations

BERT PaECTER

TF-IDF (worst performer):

» ~1.50 increase—opposite conclusion!
o « Validation correctly discards

e PaECTER, S-BERT (cf. GTE):
7‘501536 1883 1930 1977 2024 7“501836 1883 1930 1977 2024 ° Similar NO’80- deC”ne’ 1880_2000
TF-IDF GTE + PaECTER + S-BERT O Dlverge pre'1880 & pOSt-ZOOO

Ensemble (avg of top models):

LA
0.00 VIL\’,/\ Wy Iy,

S « ~1.00 decling, 1836-2023

050 080 ‘LW"\\/%/

o0 Validated methods agree; unvalidated
-1.50 -1.50 TF'IDF miS'eadS

1836 1883 1930 1977 2024 1836 1883 1930 1977 2024

27



Robustness: Accounting for Multi-Patent Entities

Standardized similarity

0.50

0.00

-0.50

-1.50

GTE | PatentsView disambiguation

Vel
T T T T T
1836 1883 1930 1977 2024
Patent Pairs Entity Pairs

Concern: Post-2000 dynamics coincide with:
business method patents, non-practicing entities,
increased defensive patenting.

» Multiple patents from same entity may be
similar but not independent.

Strategy: Sample 1 patent/entity—year

Result:
» Decline persists after correction
» Independent inventions still spreading out

28



Robustness: Spreading Out Within Technology Classes

Alternative explanations: Changing patent 0e]
office practice over time? Shifts across major
technology areas?

0.62

Test: Within-class similarity by class “age”
« Birth = Class first issued 50 patents 0st
« e.g., Combinatorial Chemistry 2001

Similarity

» Addresses compositional concerns 060

T T T T T T T T T
0 20 40 60 80 100 120 140 160
Age of technology class (years)

Finding: Within-class similarity declines as
classes mature

Spreading out is a dynamic process tied to field evolution

29



Corroboration: Expanding Convex Hull

4 R&D regression

Is Idea Space Expanding?

Log volume of convex hull (7 principal components)
17

Test:
e 1024 GTE dimensions to 7 PC
e Measure volume of convex hull

Resulit:
o +0.5%/yr (6 PC: +0.4%/yr)
. « Likely under-estimate due to
13;8'36 1858 1930 077 2004 dimensionality reduction
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Independent Corroboration: Declining Interference Rates

Patent interferences:

Interference rate per 10,000

e USPTO determination that two independent E} "“»' .
inventors made identical inventions | ’
» Direct measure of multiple invention (d = 0) i N
Data: Purpose-digitized from 5 sources ' .
« Nat. Archives & Registers (1838-1900) o e e
« Published statistics (1950-1994)

o eFOIA decisions (1998-2014) canguli et al. 2020

Same conclusion from

Finding: Interference rate declined over 150 years completely different data source
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Summary: Inventions Are Spreading Out

Robust evidence of spreading out:

v' Main finding: 1.5¢ decline in similarity, 1836-2023

Decline extends after 2000 for independent inventions
Robust to spatial scale (local and global) o0
Robust to within vs. between class decomposition o

Appears within classes as they age
Corroborated by interference rates (150 years)

N NN

Idea space is expanding

Next: What are the consequences for research productivity?
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Prediction 2:
Does Spreading Out Reduce R&D Productivity?



The Puzzle: Are Ideas Getting Harder to Find?

The research productivity decline:
« Real R&D up >20x since 1930
« TFP growth slowed by factor of 3x
» R&D productivity decline >-5%/yr

Key question: Why does it take so much
more research effort to achieve
slower growth?

TFP growth (%)

T T T T T T T T
19481955 1965 1975 1985 1995 2005 2015

Year

32,



Timing: Similarity Predicts TFP and R&D Growth

3-year log TFP growth, 1949-2015 3-year log agg R&D growth, 1949-2015
4
A4
31
.05
27
14
04
04
-05+ . 1]
T T T T T T T T T T
-2 1 0 1 2 -2 1 0 1 2

3-year change in standardized similarity 3-year change in standardized similarity

« Left: Declining similarity — lower TFP growth
 Right: Declining similarity — higher R&D growth

Both patterns confirm Prediction 2
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TFP and Spreading Out



From Theory to Estimation: TFP

TFP growth equation (from BGP): @
/30’) _ Bg

-
EN TQd - ng
—— ——

N——
Quality (with spillovers)  Spillover attenuation  Adaptation drag

g1rp = gq(H‘ﬂ—

Substitute equilibrium relationships for unobservables:

T
grrp = (1 +ﬁ—z)‘9d—ﬁ(1+1/7’)/l'd'9d
b =
!

Suggests the regression:

» Observable proxy: gqg~—ASim (small annual changes in standardized measure)

Alog(TFP); = by + by - (—ASIM); + by - (~ASIM) - (=Sime_q) + €¢
34



From Theory to Estimation: TFP

Regression Specification:

Alog(TFP); =bg +bq-(—ASim); + by - (—ASIM) - (—Sim¢_4q) + bz - t+e¢

Data:

o TFP and Real R&D Inputs, 1948-2015 (Bioom et al, 2020)

Predictions and interpretation:

« by s0: Effect on TFP growth from T quality scaling net of | adaptation costs
« b, <0: Spillover attenuation and reduced marginal return to R&D
« bs: Time trend controls for factors not explicit in the model
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TFP Growth and Technological Distance
S5-Year

Annual 3-Year
bq:—=1x ASim —0.169" —0.171% —0.278"* —0.269**
(0.057) (0.083) (0.095) (0.098)
by : (—1x ASim) x (—1xSim¢_4) — —0.015 —0.408 —0.571%
(0.342) (0.320) (0.312)
Implied TFP drag from spreading out (ASim, %/yr):
1948 (Sim =0.35) —0.08 —0.08 -0.07 —0.04
1991 (Sim =0, baseline) —0.08 —0.09 —0.14 —0.16
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TFP Growth and Technological Distance

3-Year 5-Year

Annual

bq:—=1x ASim —0.169" —0.171% —0.278"* —0.269**
(0.057) (0.083) (0.095) (0.098)

by : (—1x ASim) x (—1xSim¢_4) — —0.015 —0.408 —0.571%
(0.342) (0.320) (0.312)

Implied TFP drag from spreading out (ASim, %/yr):

1948 (Sim =0.35) —0.08 —0.08 —0.07 —0.04
—0.08 —0.09 —0.14 —0.16

1991 (Sim =0, baseline)

Validation: Implied drag -0.16%/yr from ASim consistent with quasi-experimental
cross-sectional elasticity of =0.15%/yr v Bioom et al. 2013, Lucking et al. 2019
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TFP Growth and Technological Distance

Annual 3-Year 5-Year

by :—1x ASIm —0.169% —0.171% —0.278* —0.269*
(0.057)  (0.083)  (0.095)  (0.098)
by : (=1 x ASIm) x (—1xSimy_1) = —0.015  -0.408  —0.571*

(0.342) (0.320) (0.312)

Implied TFP drag from spreading out (ASim, %/yr):
1948 (Sim =0.35) —0.08 —0.08 —0.07 —0.04
1991 (Sim =0, baseline) —0.08 —0.09 —0.14 —0.16

Validation: Implied drag -0.16%/yr from ASim consistent with quasi-experimental
cross-sectional elasticity of =0.15%/yr v Bioom et al. 2013, Lucking et al. 2019

Contribution to TFP deceleration: Drag worsened -0.04%/yr (1948) — -0.14%/yr

(2015). Change = 0.10 pp = 7% of 1.4 pp total TFP deceleration.
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R&D and Spreading Out



From Theory to Estimation: R&D

R&D growth equation (from BGP): €@

grep= 9n + 0(1+n)gg + (1-0)g9f
~— ———— N—

Entry  Quality (incl. fishing out) ~ Rising fixed costs

Substitute equilibrium relationships:

9rep = [1+a(1-0)]gn+[0(1+n)—1] 94

dap a

Regression specification:
9rent=3aop+a- (—ASim)t +as-t+e€;

+ a, captures (unmodeled) acceleration in idea space growth (but: &, ~ 0)
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Identification of Structural Parameters

Identification of structural parameters:

a=0(1+n)-1 ao=[1+a(1-0)lgn
g U
_art] _ 3
" 149 =T a(1-0)
(variable cost share) (idea space growth)

Baseline: « =1, n="1. Later: Calibration w/ quasi-experimental 7} and estimate of a.

Regression coefficients — structural parameters (0,9y)
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R&D Growth and Technological Distance

Annual 3-Year 5-Year
0.165 0.448=  0.438*

daq. —1xASIm
(0177)  (0.219)  (0.244)
ap: Constant 0.034* 0.102**  0.173*
(0.006) (0.013)  (0.018)
0.58 0.72 0.72

Implied 6 (variable cost share)

Implied gy (idea space growth)  2.4%/yr  2.7%[yr 2.7%[yr

Validation:
o 0 =72% aligns with NSF survey data (labor = 69% of R&D) v
e gy =2.7%/yr consistent with patent embedding volume growth v @

» BGP consistency: Model predicts g4/9ren = 1/3; In data, —ASim/grep = 0.31
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Growth Accounting



The Research Productivity Decline

Research productivity:
II=grrp/Agg R&D (TFP growth per unit R&D)

The decline (1948-2015):

 TFP growth fell: 21%/yr — 0.7%/yr  (9g,s, =—1.6%/yr)
« R&D spending grew: 4.0%/yr

9n =Yg —9IRrRD = —1.6%—4.0% =| —5.6%/yr

Goal: Decompose this decline into spatial and non-spatial components

40



From Regressions to Parameters

What we estimated from R&D regression:

Parameter Value Source

0 (variable cost share) 0.72 R&D regression coefficient a, (n=1)
gy (idea space growth) 2.7%/yr R&D regression constant ag (@ =1)

What we assume (baseline):

Parameter Value Interpretation

a (entry cost curvature) 1.0 Entry costs scale linearly with H
n (R&D cost curvature) 1.0 Quadratic R&D costs
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Decomposing the R&D Productivity Decline

Model implies: g, = 594 =1.35%/yr (spreading rate if a =1)

Component Contribution Classification = Comment

TFP deceleration —1.6%/yr
Spatial drag worsened —0.11%/yr Spatial 7% of deceleration
Unmodeled factors —1.49%/yr Non-spatial
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Decomposing the R&D Productivity Decline

Model implies: g, = 594 =1.35%/yr (spreading rate if a =1)

Component Contribution Classification = Comment
TFP deceleration —1.6%/yr
Spatial drag worsened —0.11%/yr Spatial 7% of deceleration
Unmodeled factors —1.49%/yr Non-spatial
R&D growth +4.0%/yr
Entry expansion (1—-5)gy +1.35%/yr Spatial (new inventions)
Quality scaling (8 59n) +0.97%/yr Spatial (larger territories; TFP units)
Fishing out (6n%9H) +0.97%/yr Non-spatial (convex costs)
Burden of knowledge (1—6)(agy) +0.76%/yr Non-spatial (rising fixed costs)
Unmodeled factors —0.05%/yr Non-spatial
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Decomposing the R&D Productivity Decline

Model implies: g, = 594 =1.35%/yr (spreading rate if a =1)

Component Contribution Classification = Comment

TFP deceleration —1.6%/yr
Spatial drag worsened —0.11%/yr Spatial 7% of deceleration
Unmodeled factors —1.49%/yr Non-spatial

R&D growth +4.0%/yr
Entry expansion (1—-5)gy +1.35%/yr Spatial (new inventions)
Quality scaling (8 59n) +0.97%/yr Spatial (larger territories; TFP units)
Fishing out (6n%9H) +0.97%/yr Non-spatial (convex costs)
Burden of knowledge (1—6)(agy) +0.76%/yr Non-spatial (rising fixed costs)
Unmodeled factors —0.05%/yr Non-spatial

Total decline —5.6%/yr
Spatial contribution —2.43%/yr 43%
Non-spatial contribution —3.17%/yr 57%
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Robustness: Spatial Share Increases with Better Calibration

Baseline assumptions: a =1, n=1
Alternative calibration:

« n=0.625: Guceri-Liu (2019)

e 0 =0.89: From R&D regression a,

« a=0.76: Constrain sum to 4.0%

o gy =3.2%/yr: From R&D regression ag
* 9a =591 ="1.2%/yr
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Robustness: Spatial Share Increases with Better Calibration

Baseline assumptions: a =1, n=1 Alternative decomposition:
Alternative calibration:

« n=0.625: Guceri-Liu (2019)

Baseline Alternative

Entry expansion 1.35%/yr 1.98%/yr
« 0=0.89: From R&D regression a, Quality scaling 0.97%/yr 1.08%/yr
« ¢=0.76: Constrain sum to 4.0% Fishing out 0.97%/yr  0.67%/yr

Burden of knowledge  0.76%/yr 0.27%/yr
o gy =3.2%/yr: From R&D regression ag Sum 4.05%/yr  4.00%/yr
* 9a=59n="12%/yr Spatial share 43% 57%
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Robustness: Spatial Share Increases with Better Calibration

Baseline assumptions: a =1, n=1 Alternative decomposition:
Alternative calibration:

« n=0.625: Guceri-Liu (2019)

Baseline Alternative

Entry expansion 1.35%/yr 1.98%/yr
« 0=0.89: From R&D regression a, Quality scaling 0.97%/yr 1.08%/yr
« ¢=0.76: Constrain sum to 4.0% Fishing out 0.97%/yr  0.67%/yr

Burden of knowledge  0.76%/yr 0.27%/yr
o gy =3.2%/yr: From R&D regression ag Sum 4.05%/yr  4.00%/yr
* 9a=59n="12%/yr Spatial share 43% 57%

Conservative baseline; higher spatial share with alternative calibration

« n=0.625<1: R&D costs grow sub-quadratically with q
« a=0.76 <1: Entry costs grow sub-linearly with H
« Entry expansion (1.98%) < patent growth (3.9%) = | ideas per patent (-1.9%/yr)
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Conclusion




1. Theory:

» Spatial model predicts as idea space expands, inventions spread out
« Space unifies new & old evidence: horizontal, vertical, R&D productivity

2. Measurement: Validated NLP methods using domain-specific tasks

» Representation choice fundamentally affects conclusions
» GTE outperforms traditional workhorse TF-IDF

3. Empirics: Nearly 2 centuries of spreading out in expanding idea space

» Robust across multiple tests and data sources
» Spatial forces can explain 40-60% of R&D productivity decline
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Backup Slides




Backup: Comparative Statics Derivations

V= ot

>0

Spreading out: From zero-profit condition dz(r—ziy
dd 1) B 1)
aH zd(f_Qiy) ~ dR/dd—dc/dd

Rising quality and prices:
dg 1dd 0. dp dd

dH yaH~ aH =~ "ar”°
Rising entry:
dn 1 Hdd
dH d d2dH —— >0 under spreading-out condition

Declining productivity:
dp o]l
aHn <%  aH~°
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Backup: Spreading Out

Proposition (Spreading Out) dd
For ty> %, equilibrium spacing increases with opportunity space: 9H > 0.
Inventions become less similar over time.
Why is spreading out profitable? Marginal revenue of expanding territory:
« Revenue R=7d? = MR=27d
MR Marginal cost of expanding territory:
Net gain « Need higher quality: g=d/y
Rl « MC =dJy
Spreading profitable when:
d 1
spacing MR>MC = |7r> >

Adaptation costs must create sufficient pricing power 44



Backup: Model Equations

Fixed cost (burden of knowledge): f(H)=¢H*

R&D cost: c(qi) = 1rq "

Realized quality (with spillovers): Q;=q;+ %/3 (1- %) (9ic1+9qit1)

Baseline model: a=1n=1
Equilibrium pricing and quality: p*=1d, g = %
Equilibrium spacing: d*(H) = o

T
Equilibrium entry: =4

Equilibrium revenue: R*=p*-d* = 7d?
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Backup: Robustness to Entry Cost Curvature

With f(H) = ¢ H%, equilibrium spacing satisfies d oc H¥/2:

Condition Entry Growth Prediction

O<a<?2 Ih=(1-%)gy>0 Entry grows v
a=2 =0 Entry stagnates
a>2 gn<0 Entry declines x

Main results robust for « < 2:

« Spreading out: gy =59y >0 for any >0
» Declining R&D productivity: Holds throughout range
« Higher a — faster spreading, but lower spatial share of productivity decline

Counterfactual boundary: Patent counts grow over time, ruling out a > 2
44



Backup: TFP and R&D Growth Equations

4 Growth rates 4 TFP regression 4 R&D regression

TFP growth:
pd ) Bq T
= 1 _— —_ _— — —
9rrp gq( +p 2 2 [¢] 49d
Quality (with spillovers)  Spillover attenuation  Adaptation drag
R&D growth:

9rep= 9n + ng + ng + (1—9)gf
S~—~— ——" ——" ————
Entry  Quality scaling  Fishing out  Burden of knowledge

where 0 = variable cost share; a =1, 71 =1

The asymmetry:

» TFP: grows with g4 minus spatial drags
« R&D: grows with g4 plus entry (g,) plus fixed costs (g¢)

Jdrep > g7rp = Research productivity declines 44



Backup: Growth Equations with General Cost Curvatures

Component General Baseline (e =1,n=1)
Entry cost f(H)=¢H* oH
R&D cost c(@)=3rg""  3rq?
Spacing growth 9d=29u TOH
Quality growth 9q=9q e
Entry growth gh=>1-%)9y %9n
Fixed cost growth  gf=agy guH
R&D growth equation:

grep=(1-2gn+ Lgn + %y + (1-0)agy
—— —— —— N——

Entry Quality scaling ~ Fishing out ~ Burden of knowledge
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Log TFP Specification

Why linear in log TFP? A;(h) = Q,—th

Standard in spatial competition (Salop 1979):

» |dea consumers have preferences linear in quality net of distance costs
» Aj(h) interpreted as log TFP = firms care about proportional productivity gains

Microfoundation: Each downstream firm has one unit of fixed input ¢ and produces:
y=et¢

With output price = 1and ¢ =1, profit is = = eA. Willingness to pay for technology
delivering incremental log TFP A (relative to baseline e® =1):

WTP=e*—1~A (first-order Taylor approximation)

Accuracy: For annual TFP increments (A~ 0.015/year), approximation error < 0.01%

Advantage: Predictions directly comparable to empirical TFP elasticities (Bloom et al.

2013) and growth accounting (Bloom et al. 2020) 44



Backup: Equilibrium Existence Conditions

Spreading-out condition:

- 1
T —_—
=9
Marginal revenue of expanding territory exceeds marginal cost.

Second-order conditions:
« Pricing: 22R/dp? < 0 (satisfied)
« Quality: 8%m/8q? =—r < 0 (satisfied)
« No spatial deviation (verified in paper)

Additional conditions:

« Spillover reach: d < A (spillovers active)

« Full coverage: All downstream firms adopt some technology
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Backup: Interference Validation Task

Patent interferences (2001-2014):

« First to invent: USPTO proceeding for multiple applicants w/ identical claims
» Provides ground truth for “identical” similarity
« 322 true interfering pairs among 96,580 application pairs

Economic intuition: Examiner ranks pairs by similarity, investigates above threshold

« Higher threshold — fewer false positives but miss true interferences
» Lower threshold — catch more but burden staff with unnecessary investigations

Metrics:

« F10: Weights recall 10x more than precision (missing interferences is costly)
« PR AUC: Precision-Recall area under curve across all thresholds

Key result: GTE, PaECTER, OpenAl retrieve ~90% of true interferences with 2-5x

fewer false positives than TF-IDF/S-BERT
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Backup: Human Annotation Task

Historical patents (1850-1975):

« Sampled patent pairs that each model ranked at least 50 percentiles apart
« Annotators rank relative similarity of 2 patent pairs
« Tests temporal robustness (historical language): Oversample 1880-1920

Task: Do model rankings agree with human rankings?

« For each patent, rank others by similarity
« Compare model ranking to human ranking

Metric: Agreement coefficient from regression
Human Rank = a + - Model Rank+ ¢
Higher B = better agreement

44



Backup: Classification Validation Task

USPTO Classifications (1850-2023):

» CPC technology codes assigned by examiners
« Section level (8 categories) and Class level (120+ categories)
« Captures expert judgment of technological relatedness

Task: Predict whether patent pair shares classification
« Same Section (coarse): 8 top-level categories
« Same Class (fine): 3-digit classification

Metric: ROC AUC

« Area under Receiver Operating Characteristic curve
« 0.5 =random, 1.0 = perfect
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Backup: Why TF-IDF Fails

TF-IDF overweights period-specific language:

« Treats “velocipede” (1880s) and “bicycle” (modern) as unrelated
» Period-specific terminology dominates similarity scores
» Creates spurious correlation with time

Example: 1880 velocipede patent

« TF-IDF: High similarity to other 1880s patents (shared vocabulary)
« GTE: High similarity to modern bicycle patents (shared concepts)

Evidence:

« TF-IDF similarity correlates with word overlap
o GTE similarity correlates with conceptual similarity
« Google Ngrams shows vocabulary shifts over time
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Backup: Similarity at Different Spatial Scales

T
o n f -(‘l—d~-)e 79
Weighted average: = 1 S Z(-d)e
GTE Weighted Similarities, Gammas 0 - 50, 1836-2023 - Zj#ie U

where y from O (global) to 50 (local)

0.75

» Key finding: Similar declining trends
across all spatial scales

e
S
=

» Model predictions concern averages
— important to verify pattern holds
across distribution

°
@
&

Weighted Average Similarity
2
2

» Post-2000 arrest slightly stronger at
: local scales (consistent with entity
correction)

1850 1875 1900 1925 1950 1975 2000 2025
Year

°
0
o
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Backup: Similarity at Different Quantiles

Similarity at Different Quantiles:

GTE Average Similarities, Every 2nd percentile, 1836-2023 « 50 quantiles of pairwise similarity in
each year

« Secular decline is robust across all
quantiles

e Post-2000 increase in similarity is
slightly faster for higher quantiles

Average Similarity

1850 1875 1900 1925 1950 1975 2000 2025
Year
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Backup: Growth in Patents vs. Patenting Entities

« Number of issued utility patents and
Indexed Total Patents + Total Entities, 1976-2023, 1976 = 100 Unique pateﬂting entities per year

500

» Divergence after 1999: substantial
growth in patents per entity

« Driven by business method patents
and non-practicing entities

300

» Motivates sampling 1 patent per entity
per year for robustness

200

100

1980 1990 2000 2010 2020
Year
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Backup: Within vs. Between Technology Classes

Within-class similarity Between-class similarity
0.65-
0.66-
0.64
0.60-
2 062 2
S 3
£ £
2] 2]
0.60
0.55
0.58
0561, ¥ F ¥ ¥ 050, - ¥ : ¥
1836 1883 1930 1977 2024 1836 1883 1930 1977 2024

Year Year

« Addresses compositional concern: Decline not driven by shifts across

technology fields — spreading out occurs within established classes
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Backup: Alternative Normalizations

Main specification: Standardize by annual cross-sectional SD

Robustness checks:

1. Time-invariant global SD — Nearly identical results
2. Raw similarity (no standardization) — Same qualitative pattern
3. Different sample sizes per year — Robust

Why standardize?

« Different representations have different scales
« No intrinsic economic interpretation of raw similarity
« SD provides meaningful units for comparison
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Backup: Kelly et al. Breakthrough Replication

Kelly et al. (2021): Identify “breakthrough”
TF-IDF patents using similarity to future patents

°
8

Our replication with GTE:

°
&

°
°
R

« Qualitative conclusions align (more
breakthroughs today)

Significant Breakthroughs
°
S

°
8

» Quantitative results more robust (less
sensitivity to methodological choices)

« TF-IDF produces noisier breakthrough
classification

°

°

Implication: Validated similarity measures
improve downstream analyses

Significant Breakthroughs
°
°

o
8
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Backup: Patent Corpus Details

Historical (1836-1975): ProQuest Patents Core
« OCR-digitized patent images
« Full text of claims extracted
« Quality varies with original document condition

Modern (1976-2023): USPTO PatentsView

« Machine-readable full text
« Structured data with claim parsing
» Consistent quality

Potential discontinuity at 1976:

« Some evidence of break in levels
« Trends consistent across periods
» Results robust to excluding transition years
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Backup: Computing Similarity Efficiently

Challenge: O(N?) pairwise comparisons infeasible for millions of patents

Solution: For unit-normalized vectors, average cosine similarity reduces to:

_ IS VIR =N
SN(N_,I);cos(V,,V]) N(N=T)

Complexity: O(N-d) where d = embedding dimension
Implementation:

1. Normalize all vectors to unit length
2. Sum vectors: S=>v;

3. Compute ||S||2

4. Apply formula

Cross-sectional SD: Subsample up to 10,000 patents/year
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Example: Register of Interferences (1890)

Purpose-digitized from National
Archives:
« USPTO Registers of Interferences,
1864-1900
« 19,388 interference cases
documented
» Average 504 annual terminations
Example cases (Jan 7,1890):

» Ehrlich v. Lawton: Roll paper cutters
» Blaine v. Hadley: Corn harvesters
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Backup: Validation of Spillover Elasticity

Quasi-experimental estimates of R&D spillovers zioom et al. 2013, Lucking et al. 2019

» Firm-level TFP elasticity to shocks to spillover pool
« SPILLTECH = sum of neighbors’ R&D, weighted by idea distance
« |V: State R&D tax credit shocks

Ingredients:

« Bloom et al. 2013 (1981-2001): 3 = 0.206
« Standard deviation log(SPILLTECH) = 1.04)
« Avg change in similarity (Bloom sample period): -0.007c [yr

Implied TFP drag from average rate of spreading out:

» -0.007 x 1.04 x 0.206 = -0.15%/yr v
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