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Abstract

How well can different methods meaningfully represent inventions in the “space of ideas”?
We evaluate four leading natural language processing (NLP) models, each of which produces
a different numerical representation of patent text. We design three novel, domain-specific
validation tasks to select between these representations. Sentence-BERT (S-BERT) signifi-
cantly outperforms other widely used NLP models, creating metrics better aligned with both
expert and non-expert human judgment about patent similarity. The choice of representation
matters significantly for economic measurement. According to S-BERT, contemporaneous
patents have declined in similarity over more than a century, as inventions have “spread out”
on an expanding knowledge frontier. Other representations report ambiguous or diverging
patterns. We reproduce the S-BERT result using newly digitized records of historical inter-
ferences, which show secular declines in the rate of multiple invention. Our results highlight
the importance of validation and model selection as an essential step in constructing and
using measures derived from patent text.

We are extending our analysis to include the latest generation of “ChatGPT-era” em-
bedding models. OpenAI’s latest embeddings significantly outperform S-BERT in our main
validation task. We are in the process of fully integrating these new results into our paper.
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1. Introduction

We need to measure invention similarity. When evaluating patent applications, an ex-

aminer must assess the similarity of its claims against prior patents and applications. For

inventors racing for priority, the overlap between their own claims and those of their com-

petitors is a crucial consideration. Policy makers may want to measure idea similarity to

encourage or discourage the duplication of independent effort on specific inventions.

Each of these settings requires a reliable measurement of invention similarity. Further-

more, invention similarity has long been a core concern for researchers of innovation. Sim-

ilarity may be a factor in the value of a patent, the strength of knowledge spillovers, the

direction of technological change, or the optimality of R&D investments (Griliches, 1979;

Jaffe, 1986). Measuring similarity is also a first step in calculating many other measures

of economic interest. For example, Kelly et al. (2021) measure “breakthrough” patents as

those that are dissimilar to prior patents but very similar to future patents.

Many methods have been used to measure patent similarity. How should researchers

choose among them? Our main contribution is to develop and implement a pipeline for the

construction, validation, and selection of measures of economic interest derived from patent

text. This pipeline is a step-by-step guide for researchers constructing other measures. We

emphasize domain-specific validation and model selection as an essential step. Our pipeline

produces a validated representation of every US patent, 1836–2022, in a “space of ideas.”

The construction of patent similarity and other measures can be usefully separated into

three distinct steps: (1) representation, (2) measurement, and (3) validation. The first step

maps each patent to a location in idea space; i.e., it represents each patent as a vector in

Rn. This mapping could be based on, e.g., patent office classifications, traditional Natu-

ral Language Processing (NLP) methods that count words, or modern NLP methods that

produce distributed embeddings. These vector representations define a space of ideas. The

second step measures a concept of economic interest using representations produced by each

of several candidate models. Patent similarity is a classic quantity of interest; other concepts
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might be motivated from theory, derived from a structural model, or based on intuition.

Different representations lead to different measurements of the same concept. Therefore,

the third step validates these representations using purpose-built, domain-specific tasks to

select the “best” mapping. This step is rare in economics and is a central focus of this paper.

Our approach accords with the common view in the NLP literature that there is no single

best method for all tasks, and therefore, methods should be assessed on their usefulness for

each particular task (Ash and Hansen, 2023). For example, two of the six “key principles

for text analysis” in the textbook by Grimmer et al. (2022) are “the best method depends

on the task” and “validations are essential and depend on the theory and the task.”

We follow these guidelines to construct validated measures of invention similarity for

US utility patents, 1836–2022. We design three novel, domain-specific validation tasks that

compare the performance of four leading and widely-used NLP models: (1) Term Frequency-

Inverse Document Frequency (TF-IDF; Sparck Jones, 1972), (2) doc2vec (Le and Mikolov,

2014; Mikolov et al., 2013), (3) Universal Sentence Encoder (USE) (Cer et al., 2018), and

(4) Sentence-BERT (S-BERT) (Reimers and Gurevych, 2019; Devlin et al., 2019). Each

task uses a sample of patent pairs with human judgments of similarity. We assess how

well different representations agree with human judgment. Our validation tasks vary across

three important dimensions. One, they span both expert and non-expert human judgment.

Two, they span text from both modern and historical patents. Three, they span a range

from near-identical similarity to coarser judgments of relatedness. We find that S-BERT

significantly outperforms other widely-used NLP models in all three of our tasks.

Our first validation task uses patent interference cases, combining modern patent applica-

tion text and expert judgment of near-identical similarity. Interference cases were triggered

when the US Patent and Trademark Office (USPTO) received simultaneous, identical claims

of invention from multiple independent parties (Ganguli et al., 2020).1 Therefore, interfer-

1Interferences cases were used to determine priority of invention under the “first to invent” rule that
prevailed in the US until 2014.
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ences are indicators of “multiple invention” (Merton, 1957, 1973). Interferences were declared

by examiners that specialized in particular technology classes, and thus indicate expert hu-

man judgment of near-identical legal similarity. We use applications in interferences decided

1998–2014. S-BERT significantly outperforms other models in classifying interfering pairs,

with a precision-recall area under curve (PR AUC) of 48%, followed by TF-IDF at 43%. This

difference is economically meaningful: a law firm switching from TF-IDF to S-BERT-based

measures to screen potential interference pairs could reduce false positives (i.e., paralegal

time) by 21%–61%. USE and doc2vec perform significantly worse, producing around 5 and

70 times more false positives than S-BERT, respectively, for a given number of true posi-

tives. In an ongoing analysis of recent (post-2023) embedding models, we show that OpenAI

embeddings offer further dramatic improvements, reducing the number of false positives in

one of the tests by 63% relative to S-BERT.

Our second validation task uses patent classifications, 1836–2022. The USPTO uses

classifications to group patents with a common subject matter. Patent classifications in-

dicate expert human judgment that there is broad (but not exact) technological similarity

between different patents. Therefore, they measure similarity at a coarser scale compared

with interferences. S-BERT again significantly outperforms TF-IDF and the other models.

Our third validation task uses a general, non-expert sense of similarity for historical

patents, 1880–1920. A challenge is that humans have difficulty precisely quantifying the

similarity of a pair of patents. Our solution is to sample patent triples: a reference patent A

and two comparison patents B and C. The triples are somewhat similar according to both

S-BERT and TF-IDF, but the models disagree about whether B or C is more similar to A.

We ask humans to resolve the disagreement. Humans prefer S-BERT 71% of the time.

Taken together, S-BERT representations produce measures of patent similarity which

more closely match human judgment. Our publicly-available S-BERT representations can be

used to calculate the similarity of any patent pair. Our results suggest these representations

should be the current standard. Of course, there is rapid development in new models; our
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pipeline provides guidance on how to evaluate them. Newer models are not always better:

TF-IDF (from the 1970s) significantly outperforms two recent models, USE and doc2vec.

The choice of model matters for the measurement of long-run trends in patent similarity.

We analyze the full text of US patents, 1836–2022, split into four corpora: titles, abstracts,

descriptions, and claims. Figure 1 shows average pairwise similarity by model (S-BERT

vs. TF-IDF), corpora, and year (see details in Section 4.1). According to S-BERT, across

corpora, patent similarity exhibits a secular decline. In contrast, measures based on TF-IDF

show ambiguous or diverging patterns. Using TF-IDF, abstracts and claims are becoming

more similar over time, while descriptions and titles have unclear trends. The results of our

prior validation step are therefore essential for interpreting this evidence. We also find that

the size of the S-BERT idea space has steadily increased over time, suggesting that inventors

are “spreading out” on an expanding knowledge frontier. Finally, according to S-BERT,

patent similarity has declined both within and between classes, suggesting that traditional

approaches using patent classifications to measure similarity may miss important margins.

We also re-examine the evidence on trends in “breakthrough” inventions following Kelly

et al. (2021). We are able to replicate some qualitative features of their study, but with fewer

discretionary researcher choices. Based on these results and our comparative measurements

of invention similarity, we conclude that S-BERT is more robust compared with TF-IDF.

We reproduce the S-BERT finding on declining invention similarity by estimating the rate

of interference over nearly 150 years. In theory, the rate of interference declines when inven-

tors choose projects that are less similar. We combine newly-digitized 1864–1901 Registers

of Interferences with summary statistics of interferences for 1950–1962 and 1981–1993 and

our 1998–2014 database of interference decisions. Consistent with S-BERT-based estimates,

the rate of interference also exhibits a secular decline. And, since interferences before 1998

were not used to validate the representations produced by S-BERT, this result represents

independent, out-of-sample confirmation of the long-run decline in invention similarity.

In a companion paper (Ganguli et al., 2024), we develop a theory where the decline
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(a) S-BERT (b) TF-IDF

Figure 1: Average pairwise patent similarity by model, corpora, and year

in contemporaneous invention similarity is related to recent findings on long-run invention

dynamics, including the increasing “burden of knowledge” (Jones, 2009), increasing R&D

spending (Hirschey et al., 2012), declining R&D productivity (Bloom et al., 2020), and

constant R&D spillovers (Lucking et al., 2019). The increasing burden of knowledge raises the

fixed costs of inventing over time. This restricts entry into invention as the space of inventions

grows, leading inventors to “spread out” over an expanding knowledge frontier. Ideas get

“harder to find” because there are weaker positive knowledge spillovers from “neighbors” that

are now more distant in idea space. Inventors increase their own R&D inputs in response

to weaker spillovers, thus reducing own-R&D productivity. (On net, total spillovers may be

roughly constant as increasing idea distance is offset by increases in own-R&D investment.)

Our paper builds on work measuring the similarity of inventions and ideas. Some have

used features such as overlapping patent classifications (Fleming, 2001; Clancy, 2018; Akcigit

et al., 2017), keywords (Azoulay et al., 2019), or citations (Wang et al., 2017; Berkes and

Gaetani, 2020). Others use the workhorse model TF-IDF (Kelly et al., 2021) or newer

NLP models including doc2vec (Feng, 2020) and S-BERT (Lee and Hsiang, 2019). Some
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recent work evaluates the performance of NLP models (Arts et al., 2021, 2018; Cheng et al.,

2022). A typical approach is to validate a single representation using expert judgment

(e.g., classifications) or choice behavior (e.g., citations). Compared with this work, our

analysis contributes a comparative design that evaluates several leading NLP models against

a common battery of validation tasks. We also provide general guidelines for innovation

researchers using NLP methods to measure economic quantities of interest, design novel

validation tasks, and document new facts about invention similarity over time.

Our analysis focuses on pairwise, contemporaneous invention similarity. This measure is

distinct from the related concepts of “novel” (Akcigit et al., 2017), “disruptive” (Park et al.,

2023), “breakthrough” (Kelly et al., 2021), or “unconventional” (Berkes and Gaetani, 2020)

innovations analyzed previously. In some cases, similarity is a direct input into a derived

measure. Our contribution is to highlight the importance of validation and model selection

for constructing measures based on patent text.

Finally, our results are useful to many applications in innovation economics. For example,

similarity measures may be used for constructing matched controls in studies of localized

knowledge spillovers (Jaffe et al., 1993; Thompson and Fox-Kean, 2005; Murata et al., 2014;

Ganguli et al., 2020). Similarity measures seem especially useful for empirical study of

theories of idea space (Dasgupta and Maskin, 1987; Akcigit et al., 2017; Clancy, 2018).

The rest of the paper is structured as follows. Section 2 outlines a pipeline for the

construction and validation of measures (including similarity) from patent text. Section 3

compares the performance of different representations in our validation tasks. Section 4

shows that representation affects measurement. Section 5 presents additional results and

potential explanations for S-BERT’s superior performance compared with TF-IDF.

2. Framework and Pipeline

A researcher wants to measure a concept or quantity of economic interest based on patent

text. This concept might be based on researcher intuition, might be motivated informally
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from theory, or explicitly derived from a structural economic model. Many such concepts

start with representations of patents as vectors in Rn, and therefore they define a space

of ideas. Then, measurements of the economic concept or quantity are functions of the

representations. Importantly, the formulation of a concept or quantity is distinct from a

particular representation or mapping of patents to idea space.

This section outlines a general pipeline for the construction and validation of similarity

measures and other measures of economic interest from patent data. Figure 2 provides a

schematic view. Given an economic concept or quantity, the construction of many measures

used in the literature can be usefully separated into several distinct steps. Step 1 maps each

patent to a location in idea space, i.e., represents each patent as a vector. Step 2 measures

the concept or quantity of interest, e.g., pairwise cosine similarities.

The contribution of this paper is to emphasize Step 3, validation-based selection between

alternative representations of patent text. Validation uses external measures which have

clear theoretical connections with the concept of interest but are available only in a sub-

sample of the data. We use the performance of different representations on multiple common

validation tasks to select the model which most closely accords with human judgment (or

“ground truth”). This goes beyond some prior usage of “validation” to mean any correlation

of a measure based on a single representation to external judgment. Taken together, these

validation tasks allow us to select the representation with the best concept validity (Step 4).

Work in progress. Recent advancements in generative AI have introduced a suite

of novel embedding models. This development necessitates a rigorous evaluation of these

models using domain-specific validation tasks. We show that on the interference task OpenAI

embeddings significantly outperform S-BERT. We are in the process of incorporating the

novel embeddings throughout the paper.

2.1. Data

We use the full text of all US utility patents issued 1836–2022. For historical patents

issued 1836–1975, we rely on the Patents Core database by ProQuest. These are digitized
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Text of patent 1
Text of patent 2
Text of patent 3

Step 1: Numerical representations in three idea spaces (Ci(mk), k ∈ {A, B, C})

Repr. A Repr. B Repr. C0.44 0.03 0.55 0.44
0.42 0.33 0.2 0.62
0.3 0.27 0.62 0.53


0.13 0.51 0.18
0.85 0.49 0.85
0.51 0.07 0.43


0 1 0 0
0 1 0 0
0 0 0 1



Step 2: Measurements of pairwise similarities (Simmk(pi, pj))

Repr. A Repr. B Repr. C
Pat 1 Pat 2 Cos. Sim.

1 2 0.82
1 3 0.94
2 3 0.87

Pat 1 Pat 2 Cos. Sim.
1 2 0.71
1 3 0.48
2 3 0.96

Pat 1 Pat 2 Cos. Sim.
1 2 1
1 3 0
2 3 0

Step 3: Validation-based selection
(
V l(mk), l ∈ {(i), (ii), (iii)}

)
Task (i) Task (ii) Task (iii)

Repr. Perf. Rank
Repr. A 0.91 1
Repr. B 0.87 2
Repr. C 0.84 3
Baseline 0.51 4

Repr. Perf. Rank
Repr. A 0.46 1
Repr. B 0.23 2
Repr. C 0.18 3
Baseline 0.03 4

Repr. Perf. Rank
Repr. A 0.85 2
Repr. B 0.93 1
Repr. C 0.73 3
Baseline 0.05 4

Step 4: Compute downstream measure based on the best representation:

E.g., “Breakthrough” patents (qm(pi)) (Kelly et al., 2021) or average patent pair similarity
(qm(pi, pj)) by year (this paper).

Figure 2: Overview of the NLP pipeline
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patent text using ProQuest’s proprietary methods. For modern patents issued 1976–2022, we

use full-text patent data from PatentsView (U.S. Patent and Trademark Office, 2023). From

the same source, we also use patent metadata, including patent classifications. We also use

the text of modern patent applications, historical and modern data on patent interferences,

and human-annotated data. These data are described as they are used in later sections.

2.2. Representation: Mapping patents to idea space

We denote a representation of patent text pi to a location in idea space as:

m(pi) = Cm
i (1)

where m refers to the particular method or model used to map the patent to a location in

idea space and Cm
i refers to the coordinate vector for patent i based on method m.

Many different methods have been used to map patents to idea space. A traditional

approach uses patent classifications (e.g., Jaffe, 1986; Jaffe et al., 1993). Classifications are

assigned by patent examiners who are specialized subject-matter experts. They are primarily

administrative tools designed to facilitate searches for relevant prior art. Currently, the

USPTO uses the Cooperative Patent Classification (CPC), which is divided into nine top-

level sections (e.g., “human necessities,” “textiles,” or “electricity”).2

In our framework, one could define a class-based mapping of patents to idea space in

which each patent is represented by a vector with 1s in the position of its assigned class(es)

and 0s in all other positions. Representation C in Figure 2 has the broad features of a

class-based representation. A limit of such class-based mappings is their coarse granularity.

Implicitly, with this representation, all patents in the same class are equally close to each

other and all patents which are not in the same class are equally far apart.

2These are further subdivided into 129 classes (e.g., “inorganic chemistry,” “manufacture of fertilizers,”
“semiconductor devices”) and 250,000 classifications overall. The USPTO periodically re-classifies all patents
to the current CPC. We use the current CPC classification as of February 2023.
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More recent NLP models use patent texts for their mappings to idea space.3 The first and

second representations in Figure 2 have the broad features of a text-based representations.

For example, Kelly et al. (2021) use a variant of the traditional NLP method TF-IDF.

TF-IDF is based on word counting. The TF-IDF coordinate vector for patent i will be a

vector of length K, where the entry for each unique word k is:

cT F IDF
i,k ≡ TFi,k · IDFi,k (2)

The first term, “Term Frequency,” is TFi,k ≡ ni,k/
∑

j ni,j, or the number of times ni,k word

k appears in patent i divided by the total number of words in patent i. The second term,

“Inverse Document Frequency,” is IDFi,k ≡ log( # of patents in corpus
# of patents in corpus with word k). Intuitively, two

patents are similar in TF-IDF idea space if they share many of the same words, especially if

those shared words are otherwise rare.

Despite its early origins in the 1970s, TF-IDF continues to be popular due to its trans-

parency, ease of use, and satisfactory performance in many cases. However, recently there

has been explosive growth in the use of neural networks and deep learning trained on large

corpora of text (e.g., Wikipedia). These models produce vector representations (called “word

embeddings” or “document embeddings”). They differ from earlier approaches in that they

(i) capture the meaning of individual words within context and (ii) distribute each word’s

meaning across an entire word or document vector (hence “distributed representations”).4

These models “learn” that different words are similar when they are frequently used in the

same context; for example, word2vec uses information from the surrounding five to 10 words.

A priori, one might expect that newer models will outperform word-counting methods due

to their ability to capture similarity in meaning in a broader, contextual sense. Ultimately,

this is an empirical question best answered through validation-based selection.

3See Gentzkow et al. (2019); Grimmer et al. (2022); Bochkay et al. (2023) for reviews of the use of NLP
methods in economics and neighboring disciplines.

4See Smith (2020) for an introduction to the evolution of word representations in NLP.
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(a) S-BERT; Class (Patent Section) (b) S-BERT; Period

(c) TF-IDF; Class (Patent Section) (d) TF-IDF; Period

Figure 3: Uniform Manifold Approximation and Projection (UMAP) plots for S-BERT and
TF-IDF representations
Notes: The plot is based on a sample of 111,251 patents stratified by patent class (USPTO Section) and quarter-century
period. To constrain extreme values, the data were winsorized at the 5% and 95% levels along both axes.
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To develop intuition, Figure 3 displays two-dimensional projections of high-dimensional

idea spaces based on (panels a, b) S-BERT and (c, d) TF-IDF representations (see details

in Appendix A.) Each point represents a patent and colors denote (a, c) different CPC

top-level sections or (b, d) quarter-century time periods. Visually, the different methods

appear to represent idea space quite differently. We expand on this comparison below.

2.3. Measuring concepts from patent text

Having obtained a text representation, a researcher can proceed to define a measure of

interest. A core measure of interest is pairwise similarity. Following common NLP practice,

define the similarity between patent texts pi and pj as the cosine similarity between their

vector representations (based on representations m) in idea space.5

Simm(pi, pj) ≡
Cm

i · Cm
j

||Cm
i ||||Cm

j ||
. (3)

Clearly, different choices of mappings m may result in different measures of pairwise

similarity (see Figure 2, Step 2). A mapping based on patent classifications yields a measure

of similarity that reflects the number of shared classes. A mapping based on TF-IDF yields a

measure of similarity that reflects shared word usage, especially if those words are otherwise

rare. Mappings based on distributed representations, such as S-BERT, yield measures of

similarity that reflect shared semantic meaning in the sense of the specific model.

A number of other measures from prior literature can also be written as vector functions

of patent representations. For example, Kelly et al. (2021) develop a clever measure of the

“importance” of patents, and study patterns in the number of breakthrough patents—those

that are in the upper tail of importance. In our notation, their measure of importance is:

qm(pi) ≡
∑

j∈F Simm(pi, pj)/|F|∑
k∈B Simm(pi, pj)/|B|

(4)

5A natural alternative, Euclidean distance, has the undesirable property of depending on document length
when used with word-counting-based methods such as TF-IDF (Grimmer et al., 2022).
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where F denotes the set of patents published in the 5 years prior to patent i, B denotes the

set of patents published in the 5 years after patent j, and |B| is the number of patents in

set B. Thus, importance is the ratio of “forward similarity,” the similarity of patent i to

subsequent patents, to “backwards similarity,” the similarity of patent i to preceding patents.

Our framework makes clear that the choice of a conceptual measure of interest is distinct

from the choice of a mapping of patents to idea space. Kelly et al. (2021) use a variant

of TF-IDF as their mapping m. Different choices for mappings m may result in different

measures of importance and may select different patents as breakthroughs.

2.4. Validation-based selection

Given a concept, how should a researcher choose between alternative representations?

Our third step is validation-based selection. Validation requires external measures which

have a clear theoretical connection with the concept of interest (“ground truth”), perhaps

for a sub-sample of the data. For us, these are external assessments of patent similarity.

Formally, given a concept of interest c, a representation-specific measurement fmi , and

a score function S that quantifies the correspondence between concept of interest and mea-

surement, validation evaluates each representation mi to select the best mapping.

V (mi) = S ({fmi(p), c(p)}) (5)

Ideally, if the concept of interest were available for all observations p, then there would be

no need for validation; we could simply use observed c(p). We resort to NLP when direct

measures of c are unavailable. Often, though, we have access to various ground truths—–

external measures that align with the concept of interest for certain observations, perhaps

imperfectly.6 If no external measures exist, annotation is often a viable alternative.

6“Ground truth” sometimes suggests uniqueness and absolute precision and accuracy. Instead, we use
“ground truth” to signify an imperfectly-accurate representation that may be imprecise or non-unique.
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Validation-based selection implements an empirically-feasible version of equation 5:

V j(mi) = Sj
(
{fmi(pj), gj(pj)} | pj

)
, (6)

where gj(pj) is a ground truth, fmi(pj) is a measurement based on representation mi, and

the score Sj quantifies the correspondence level between measures derived from the repre-

sentation mi and ground truth. Measurement and ground truth share the same domain pj,

which is typically small and may not be randomly selected from the population p. Ground

truth must be theoretically aligned with the concept of interest; multiple ground truths j

correspond to different validation tasks. Sj could be correlation or mean squared error. The

functional form of Sj may vary across different validation tasks j.

V j(mi) is then a score or ranking for each model mi of the set {m1, m2, . . . , mn}. This

identifies the best representation according to validation criterion j. If different validations

suggest different representations as optimal, a final decision should use human judgment

regarding the relative importance of each validation task.

For concreteness, we can apply this framework to our analysis. In the interference valida-

tion task, pj represents the set of patent applications in interference cases. The ground truth

function g(pj) creates pairwise combinations of these applications and produces a Boolean

vector whose entries are 1 if the corresponding pair was in an interference case. This approach

is theoretically grounded on the premise that subject-matter experts (i.e., examiners) can

identify application pairs with a high degree of similarity. The function fmi(pj) computes

pairwise similarities based on the representation mi. The score function Sj is the Receiver

Operating Characteristic Area Under the Curve (ROC AUC) or the Precision-Recall Area

Under Curve (PR AUC) score using fmi(pj) as the signal and g(pj) as the label.

A second ground truth is patent classifications. To continue developing intuition, return

to Figure 3, panels (a) and (c). S-BERT representations clearly produce a mapping in which

patents in the same CPC top-level class cluster together, as indicated by color. In contrast,
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TF-IDF representations present less clear clustering by class. This is visual evidence that

S-BERT provides a better representation of idea space than TF-IDF, at least according to

this particular validation task. Section 3.2 quantifies this result more precisely.

Intriguingly, other features of this visualization besides patent classifications accord with

external human judgment. In Figure 3a, the blue square near (-5, 0) contains many semi-

conductor patents (in the Electricity top-level class). This cluster is positioned between a

light-blue square of materials science patents (Chemistry and Metallurgy) to its left and

a broader Electricity cluster to its right. This relative positioning does not score S-BERT

any points on the patent class validation task, but it accords with external knowledge that

semiconductor innovations combine materials science and electricity. This result also high-

lights that a single ground truth is unlikely to perfectly capture patent similarity. Therefore,

multiple validation tasks, as we employ in Section 3, are desirable.

Note that we use the term “validation” differently from some prior literature. For us,

validation is integrated with model selection. This domain-specific validation-based selection

is common in many fields but less prevalent in economics (Grimmer et al., 2022).7 In contrast,

a common usage is to “validate” an NLP measure by correlating with an external ground

truth. For example, our interference validation could evaluate only a single representation

chosen ex ante (e.g., TF-IDF). We could then compare TF-IDF’s score to a random-guess

benchmark. This is a low bar for concept validity and model selection: TF-IDF easily passes.

In our framework, this is implicitly a form of validation-based selection that simply reaffirms

the initial choice of representation. However, this approach fails to recognize that all of our

candidate models easily pass, even though there are very large performance differences.

7Ash and Hansen (2023) provide examples outside of innovation economics where different representations
lead to different conclusions. In economics, a similar concept to validation-based selection is econometric
model selection. There, various models might be evaluated using common criteria such as the Akaike
Information Criterion (AIC). Validation-based selection also parallels model selection based on out-of-sample
testing in Machine Learning. There, mi is one model from a set of candidates, pj is the sample not used
for model training, g(pj) are the realized values of the dependent variable, and fmi(pj) are the predicted
values. The score function could be, e.g., root mean squared error.
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3. Validation Task Results

3.1. Interferences

Our first validation task uses patent interferences. Patent interferences were USPTO

administrative proceedings that decided priority of invention when two or more independent

parties claimed to have invented the same thing at the same time. An interference was

suggested by a specialized patent examiner when, during their search for relevant prior

art, they encountered at least two US patent applications contained the “same patentable

invention” (37 CFR §1.601).8 Thus, patent interferences represent expert judgment that two

independent patent applications contain identical legal claims.

3.1.1. Data

We select patent applications from a database of 215 interference cases decided 1998–

2014.9 These decisions were publicly available through the USPTO’s “e-FOIA Reading

Room” and encoded by Ganguli et al. (2020). Each interference case involves two or more

independent parties with competing, simultaneous claims to the same patentable invention.

Each party has one or more patent applications corresponding to the content of the inter-

ference. In our database of 215 cases, we identify 440 distinct patent applications. Using

these interference cases and applications, we construct 96,580 (= 1
2(4402 − 440)) application

pairs. Of these application pairs, we identify 322 interfering pairs—meaning two patent

applications from independent (opposing) parties that make overlapping claims of invention.

We represent the text of each application using patent class, TF-IDF, doc2vec, USE, and

S-BERT. For every pair of application representations, we compute their cosine similarity.

8Patent interferences owe their existence to the unique “first to invent” rule that prevailed in the US until
2013. Under “first to invent,” the inventor who conceived and reduced to practice first was awarded patent
protection. This contrasts with the “first to file” system that prevails in the US today and in much of the
rest of the world, where the patent is awarded to the first inventor to file a patent application.

9This is a subset of the 1,329 interference cases used in (Ganguli et al., 2020). Our present sample is
limited to interference cases where (i) we observe the number of distinct claims in interference and (ii) we
observe applications for both parties. Interference claims data are coded from decisions; some decisions omit
this information. Patent application data are available only after March 15, 2001.
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Table 1: Example rows from the patent pair dataset used for interference validation

Cosine similarity based on:
ID App. 1 ID App. 2 Class TF-IDF doc2vec USE S-BERT Int.
12714708 13775784 0.00 0.09 0.75 0.46 0.52 0
10054638 10739610 0.25 0.01 0.91 0.41 0.58 0
10388111 10461256 0.00 0.00 0.38 0.06 0.11 0
10278437 10923413 0.00 0.02 0.76 0.37 0.40 0
12714205 12714708 1.00 0.48 0.83 0.65 0.94 1

Notes: Columns show patent IDs, similarity scores from different patent representations, and a binary label indicating
whether this pair was part of an interference case.

Table 1 shows an excerpt of the resulting application-pair database. Each row is a unique

pair. Columns are application identifiers, similarity scores, and a true interference indicator.

3.1.2. Evaluation

Next, we evaluate the performance of alternative representations. The task is to classify

application pairs in interference. Evaluating such a binary classification problem is surpris-

ingly complex. We highlight these complexities by considering a hypothetical scenario where

a patent examiner wants to identify application pairs that are likely to be in interference.

First, the examiner cares about (i) how often a classifier correctly classifies true interfering

pairs (true positives), (ii) how often a classifier incorrectly classifies non-interfering pairs as

interfering pairs (false positives), and (iii) the relative weights on these two criteria.10 Here,

true positives represent, pre-2014, the statutory obligation of the USPTO to determine

priority of invention, while false positives incur investigation costs through examiner and

paralegal time. Thus, there may be a trade-off between classifiers which detect many true

positives but also many false positives, and those which detect fewer true positives but also

fewer false positives. This can be formalized as the tradeoff between recall and precision.

The recall of a classifier is the share of total interferences it correctly identifies. The precision

10Formally, this is referred to as cost-sensitive classification (Elkan, 2001)).
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Table 2: Rankings based on threshold-based metrics

(a) Separate F1-max. thresh.

Rank Repr. TP FP F1
1 S-BERT 154 97 0.55
2 TF-IDF 117 70 0.47
3 USE 90 67 0.38
4 doc2vec 52 79 0.23
5 Class 111 899 0.17

(b) Separate F10-max. thresh.

Rank Repr. TP FP F10
1 S-BERT 285 3,231 0.83
2 TF-IDF 275 4,369 0.77
3 USE 266 5,447 0.73
4 Class 232 6,942 0.61
5 doc2vec 243 24,498 0.44

(c) TP fixed at TF-IDF’s F1-max. thresh.

Rank Repr. TP FP F1
1 S-BERT 117 55 0.48
2 TF-IDF 117 70 0.47
3 USE 117 191 0.38
4 Class 117 972 0.17
5 doc2vec 117 3,399 0.06

(d) TP fixed at S-BERT’s F1-max. thresh.

Rank Repr. TP FP F1
1 S-BERT 154 97 0.55
2 TF-IDF 154 252 0.43
3 USE 154 615 0.28
4 Class 154 1,636 0.15
5 doc2vec 154 7,992 0.04

Notes: F1/F10 scores and underlying true positives and false positives with a different thresholding strategy in each panel.
The total number of patents is 440; the total number of patent pairs is 96,580; the total number of interference cases is 312.

of a classifier is the share of pairs correctly classified as interfering.

Second, note that many different classifiers can be built from a given similarity measure.

The natural way to use the similarity measures to build a classifier is to pick a threshold level

of the similarity score, and classify those pairs above the threshold as interfering pairs and

those below as not. Different threshold levels will lead to classifiers with different performance

in terms of selecting true positives and false positives.

As a starting point, consider the case where the examiner values identifying promising

cases (recall) and not overburdening staff (precision) equally. We consider how the different

similarity measures perform when the threshold for each classifier is chosen to maximize

the so-called F1 score, which weights precision and recall equally. The results in Table 2a

show that S-BERT has the highest F1 score, followed by TF-IDF, at each measure’s F1-

maximizing threshold. However, while S-BERT results in more true positives, it also results

in more false positives than TF-IDF.
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Next, consider the case where the examiner is more concerned with identifying potential

interferences (true positives) than wasted effort (false positives)—i.e., staff time is relatively

cheap. The F10 score weights recall ten times more than precision. Panel (b) shows that at

each measure’s F10-maximizing threshold, S-BERT retrieves around 3% more true positives

than TF-IDF, while reducing false positives by a remarkable 24%. The higher true-positive

rate surfaces more high-likelihood interferences, while the smaller false-positive rate reduces

unnecessary investigations by almost a third.

Another way to compare classifier performance is to fix the number of true positives at

one model’s F1-maximizing level, and compare the number of false positives. To do so we

first select a threshold for each measure which yields the same number of true positives as

at the TF-IDF F1-optimal level. Panel (c) shows that S-BERT can achieve this number

of true positives while selecting 21% fewer false positives. Next, we select a threshold for

each measure which yields the same number of true positives as at the S-BERT F1-optimal

level. Panel (d) shows that S-BERT can achieve this higher number of true positives while

selecting 62% fewer false positives than TF-IDF.

Notably, on these threshold-based evaluations S-BERT and TF-IDF significantly out-

perform the classifiers based on the other two NLP methods, USE and doc2vec. We also

report the performance of a classifier based on the number of shared CPC classes between

application pairs, which consistently lags behind S-BERT and TF-IDF.

We next report results based on two metrics which summarize classifier performance

across all possible thresholds. Receiver Operating Characteristic Area Under the Curve

(ROC AUC) evaluates the trade-off between true positive and false positive rates across all

possible thresholds. Precision-Recall Area Under Curve (PR AUC) measures the trade-off

between precision and recall across all possible thresholds.11

Across both ROC AUC and PR AUC, we find that S-BERT best predicts interference

cases, followed by TF-IDF, and then the other models (Table 3). The PR AUC differences

11See Davis and Goadrich 2006 for a comparison of the two measures.
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Table 3: Rankings based on non-threshold-based metrics

(a) ROC AUC

Rank Repr. ROC AUC
1 S-BERT 0.99
2 TF-IDF 0.98
3 USE 0.97
4 Class 0.85
5 doc2vec 0.84

(b) PR AUC

Rank Repr. PR AUC
1 S-BERT 0.51
2 TF-IDF 0.43
3 USE 0.34
4 Class 0.20
5 doc2vec 0.15

Notes: ROC and PR AUC scores for different patent text representations on predicting interference cases.

are more pronounced, as expected for an imbalanced binary prediction problem.

Across threshold- and non-threshold-based comparisons, classifiers based on S-BERT

consistently uncover a higher number of true positives at substantially lower false positive

costs than the other NLP methods. The performance gain is economically significant—a

patent examiner upgrading to a S-BERT-based classifier from an alternative methods could

substantially reduce costs. TF-IDF is a clear second-best, ahead of USE and doc2vec.

3.1.3. OpenAI embeddings (text-embeddings-large3) and other recent (as of February

2024) embeddings

Table 4 presents preliminary results for more recent embedding models. We selected

embedding models based on their performance on the generalist Massive Text Embedding

Benchmark (MTEB) leaderboard as of February 202412. Among the best-performing mod-

els on MTEB, we select OpenAI’s text-embedding-3-large, Voyage AI’s voyage-code-2

embeddings, and UAE-Large-V1 embeddings introduced by Li and Li (2023).

The OpenAI model performs exceptionally well. At the F-10 maximizing threshold, the

OpenAI model reduces false positives compared with both S-BERT and TF-IDF (1,118 versus

3,001 and 5,306, respectively, with a similar number of true positives). This suggests that

the OpenAI embeddings outperform S-BERT to a similar extent as S-BERT surpasses TF-IDF.

12Created by Muennighoff et al. (2023), available at https://huggingface.co/spaces/mteb/leaderboard.
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Table 4: Rankings of recent embeddings models

(a) PR AUC

Rank Repr. PR AUC
1 OpenAI 0.62
2 Voyage 0.59
3 S-BERT 0.52
4 Angle 0.51
5 TF-IDF 0.44
6 USE 0.36
7 Class 0.21
8 doc2vec 0.16

(b) Separate F10-max. thresh.

Rank Repr. TP FP F10
1 OpenAI 255 1,118 0.89
2 Voyage AI 254 1,665 0.87
3 Angle 244 1,701 0.83
4 S-BERT 250 3,001 0.82
5 TF-IDF 253 5,306 0.77
6 USE 235 4,984 0.72
7 Class 209 6,255 0.62
8 doc2vec 198 17,944 0.44

Notes: PR AUC and F10 scores for different patent text representations on predicting interference cases.

We are currently focused on fully incorporating these new embeddings into our paper.

3.2. Patent Class and Time

We classify patents into 56 section-by-time-period groups according to (i) eight top-level

CPC technology sections and (ii) date of issue in seven quarter-century periods from 1850 to

2022. We draw random samples of 200 patents from each group, yielding 11,200 total patents

and 62,714,400 unique pairs of patents. For each pair, we create indicators for common

section or common time period. As in the prior task, we then evaluate the performance of

similarity scores based on TF-IDF and S-BERT representations at classifying patent pairs

as belonging to the same class or the same period.

Figure 4 shows that S-BERT representations better predict shared CPC sections among

patent pairs, while TF-IDF representations better predict shared date of issue. (This more

precisely characterizes the results in Figure 3.) Following its superior performance in the

interference task, we view this as another validation that S-BERT better represents similarity

in idea space, even if patents were issued in different eras. As we discuss in Section 5, TF-

IDF’s basis in counting words makes it sensitive to changing word usage. Compared with

S-BERT, patent pairs issued in different periods are farther away in TF-IDF’s idea space.
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(a) Same Class; ROC (b) Same Period; ROC

(c) Same Class; PR (d) Same Period; PR

Figure 4: Representation performance on same class and same period classification task

3.3. Nonexpert human judgment

We design and implement a non-expert human validation task. This task complements

the interference validation task, as it draws patents from a different time period (1880-1920)

and focuses on patents which are of a moderate level of similarity (versus nearly identical).

A main challenge is that humans without special training struggle to place objects on

absolute scales (Carlson and Montgomery, 2017). Therefore, we asked five research assistants

(RAs) to make relative judgments of similarity for the same 100 patent triples (see Table 5
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for an example).13 We presented them with a Focal Patent and asked them to select either

Patent 1 or Patent 2 as more similar to the Focal Patent.14 RAs were told to use any criteria

they wished. They were not required to understand the technical details of inventions, but

they were allowed to do web searches for technical terms if they wished.

In initial pilots, humans had trouble assessing the relative similarity of patents that

were extremely dissimilar. Through iterative exploration on patent triples not used for final

annotation, we found that the 75th percentile of similarity across all patent pairs was similar

enough for human perception. We required both comparison patents to have at least that

level of similarity to the Focal Patent, for both S-BERT and TF-IDF representations.

To increase power compared with random sampling, we only sampled triples for which S-

BERT and TF-IDF disagreed on the relative similarity between the Focal Patent and Patent

1 or Patent 2. Therefore, both models deemed Patents 1 and 2 as somewhat similar to the

Focal Patent, but they disagreed on which is more similar. Annotators were tasked with

resolving this disagreement. Additionally, we chose to present annotators with a concise

extract from the summary paragraph15 and the first 120 characters of the claims section.

3.3.1. Results

Table 6 shows results. We estimate a regression with a dependent variable indicator

that the S-BERT (vs. TF-IDF) representation of Patent 1 is more similar to the Focal

Patent. The main explanatory variable is an indicator that the annotator chose Patent 1 as

more similar to the Focal Patent, i.e., they agreed with S-BERT. The sum of the estimated

intercept and coefficient is equal to the share of patent triples for which the annotator agreed

with S-BERT. Overall, the five annotators agreed with S-BERT 71% of the time and TF-

13These RAs were not involved in the project in any other capacity. This task was inspired by Carlson
and Montgomery (2017)

14We also allowed them to select “Can’t choose.” The observations annotated as “Can’t choose” were
excluded from the analysis.

15The text between “improvement(s) in” and the next “.” are present in the majority of patents.
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Table 5: Example annotation task for the human validation

Focal Text Text 1 Text 2
IMPR: improvements in
music-scales
CLAIMS: 1. A scale device
for a music-perforation
spacer, comprising strips,
each having imprinted
thereon a signature, and a
plurali

IMPR: Improvements in the
Mounting of Piano-Keys
CLAIMS: The combination
of a piano-key having a
solid top, with a balance-pin
firmly affixed in the under
side of said key and projec

IMPR: Improvement in
Pianofortes
CLAIMS: , and desire to
secure by Let-5 ters Patent
of the United States, is- In
combination in a piano, the
frame, the double suppor

Notes: Annotators were presented with 100 triples of texts and were asked whether Text 1 or Text 2 is more similar to the
Focal Text. Triples were selected so that S-BERT and TF-IDF representations disagree about this relative similarity. The
texts preserve errors in optical character recognition and parsing that were presented to human annotators.

IDF 29% of the time.16 Each of the five annotators tended to select the patents preferred

by S-BERT with the rate ranging from 67% to 75%. The regression estimates suggest we

can reject the null hypothesis that S-BERT is no better compared with TF-IDF at aligning

with human judgment. These findings therefore suggest that S-BERT also better captures

a non-expert human sense of similarity for historical patents.

4. Validation Matters for Downstream Economic Measurement

We find that the average similarity of patents has been declining since at least the early

20th century. This robust finding is evident only when idea space is represented by S-BERT,

the model that performed best across all three validation tasks described above. In contrast,

representations based on TF-IDF suggest that similarity has been increasing over time, and

are much less robust across different corpora. The results from the above validation tests

are thus essential for interpreting these results.

In a companion paper (Ganguli et al., 2024), we develop a theory where the decline

in contemporaneous invention similarity is related to recent findings on long-run invention

16There was moderate consensus across annotators: 68% for label 1, 58% for label 2, and 26% for “Can’t
choose.” A moderate level of agreement is expected given the open-ended nature of the similarity assessment
criteria.
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Table 6: Annotator agreement with S-BERT vs. TF-IDF in the human validation task.

Dep. Var.: S-BERT=1
Pooled Ann.1 Ann.2 Ann.3 Ann.4 Ann.5

(Intercept) 0.19∗∗∗ 0.26∗∗∗ 0.14 0.19∗∗ 0.09 0.21∗

(0.03) (0.07) (0.07) (0.07) (0.08) (0.08)
Choice=1 0.52∗∗∗ 0.45∗∗∗ 0.52∗∗∗ 0.55∗∗∗ 0.64∗∗∗ 0.50∗∗∗

(0.04) (0.09) (0.09) (0.09) (0.11) (0.11)
R2 0.27 0.20 0.26 0.30 0.40 0.24
Adj. R2 0.27 0.19 0.25 0.30 0.39 0.23
Num. obs. 402 91 92 93 56 70
∗∗∗p < 0.001; ∗∗p < 0.01; ∗p < 0.05

Notes: Annotators were presented with 100 triplets of texts and were asked whether the Focal Text is more similar to Text 1
or Text 2. Each of the texts is preferred by a similarity metric based on either TF-IDF or S-BERT. In the regression, the
dependent variable, S-BERT=1, is an indicator equal to 1 when S-BERT indicates that Text 1 is more similar to the focal
text than Text 2 (which is preferred by TF-IDF). The independent variable, Choice=1, is an indicator variable equal to one
when the annotator chooses Text 1 as more similar to the Focal Text. The first column is based on the pooled data of the 5
annotators and the rest of the columns are based on the data of individual annotators. All annotators were given the same
100 triples. Sample sizes differ because the annotators had an option not to choose when they were unable to do so and those
annotations were excluded.

dynamics, including the increasing “burden of knowledge” (Jones, 2009), increasing R&D

spending (Hirschey et al., 2012), declining R&D productivity (Bloom et al., 2020), and

constant R&D spillovers (Lucking et al., 2019). As the increasing burden of knowledge raises

the fixed costs of inventing, inventors “spread out” over an expanding knowledge frontier. In

this model, ideas get “harder to find” (Bloom et al., 2020) because inventors respond to the

expansion of idea space by spreading out to avoid competition. In turn, this makes invention

harder because there are weaker positive knowledge spillovers from “neighbors” that are now

more distant in idea space. Inventors increase their own R&D inputs in response to weaker

spillovers, reducing own-R&D productivity. (On net, total spillovers may be roughly constant

as increasing idea distance is offset by increases in own-R&D investment.)

4.1. Declining invention similarity using S-BERT

We measure invention similarity over time using S-BERT. We use S-BERT represen-

tations for every issued patent, 1836–2022, split into four components: abstracts, claims,

descriptions, and titles. The abstract is a short synopsis of the patented invention, usually

26



about a paragraph.17 Claims are a precise set of numbered statements that define the scope

of invention and determine its legal boundaries. The description is the remaining text that

often includes background information and a description of prior art, and includes abstracts

prior to 1976. A patent title is typically around 3–5 words long.

Figure 1a shows average pairwise similarity based on S-BERT. Each corpora exhibits

declining similarity. The decline in description similarity spans the entire range. The decline

in the similarity of claims and titles dates to at least the early 20th century. Abstracts have

declined steadily in similarity since 1976, when they are first parsed in our data.

Some minor features of Figure 1 deserve comment. The number of issued patents per

year increases over time, which accounts for reduced volatility over time. Post-1976 patent

text does not rely on OCR, which could account for the modest structural breaks seen in

series for claims and descriptions. Finally, there are a number of indicators that suggest

undocumented discrete changes in how ProQuest processed the OCR outputs for titles of

patents issued after 1919. This could account for the drop in title similarity after that year.

A related measure of interest is the size of the knowledge space. How “wide” is the frontier

of knowledge? One measure of this might be the convex hull of the vector representations of

all patents issued in one year. Unfortunately, the large number of patents in a given year and

the high dimensionality of S-BERT vectors makes this exercise computationally infeasible.

To make progress, we first use principal component analysis to reduce the dimensionality

of S-BERT vectors to seven principal components. Then, we use the quickhull algorithm to

compute the volume of the convex hull containing the principal components from that year.

Figure 5 shows the results. The lower-dimension space spanned by the seven principal

components has generally and steadily increased in size over time. By using an alternative

measure, this result provides a check on the invention similarity results presented in Figure 1.

Moreover, it adds a geometric intuition to the similarity results: the size of the “knowledge

frontier” has expanded over time. Taken together with the results on invention similarity,

17Abstracts are separately parsed in our data only in 1976 and later.
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Figure 5: Size of convex hull of 7 principal components of S-BERT vectors by year

inventors appear to be “spreading out” on an expanding knowledge frontier.

4.2. Measurement depends on representation

S-BERT and TF-IDF produce significantly different pictures of the evolution of average

similarity over time. Figure 1b shows average pairwise similarity based on TF-IDF. TF-IDF

delivers results which are (i) often opposite S-BERT and (ii) inconsistent across corpora.

Abstract and claim similarity has been increasing over much of observed history. In contrast,

descriptions increase in similarity in the 19th century and decline in the 20th century.

These results emphasize the importance of validation. Without validation, researchers

would have little guidance on which “stylized facts” to trust. The validation results increase

confidence in our conclusion that average patent similarity has declined over the long run.

To further demonstrate that measurement depends on representation, we revisited the

analysis of “breakthrough” patents by Kelly et al. (2021). (See details in Appendix B.)

Overall, our analysis confirms the Kelly et al. (2021) finding that the rate of breakthrough

inventions is higher today compared with prior decades. That said, the choice of representa-
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tion still matters. Compared with the TF-BIDF representations used by Kelly et al. (2021),

S-BERT-based measures suggest that the recent increase in breakthrough inventions is less

unusual compared with historical patterns. Moreover, S-BERT-based measures appear to

be more robust and less sensitive to decisions about how to process and residualize the data.

4.3. Declines within and across patent technology classifications

Figure 6 shows that both within-class and between-class similarity have been generally

declining over time. We group patents into each of the 129 CPC classifications. We then

calculate average pairwise similarity for patents in the same class and for those in different

classes, returning to our validated S-BERT based representations and using claims as our

corpus. Over most of the period both within-class and between-class similarity have been

declining (with the exception being a sharp increase in the late 19th century in within-class

similarity). Both of these margins of decline would be missed by more traditional approaches

using only classifications to measure similarity. Those measures implicitly treat all patents

in a class as equally similar and all patents in different classes as equally dissimilar.

4.4. Declines in Interferences

In this section, we validate the S-BERT results on declining similarity by constructing a

time series of interference rates over 150 years. This is an out-of-sample reproduction of the

finding of declining patent similarity over time. While interferences were used to validate

S-BERT-based measures of similarity, only applications in interference cases post-1998 were

used, while this section documents trends in interference rates over 150 years.

We estimate the annual rate of interferences per issued patent. This is approximately the

probability that an issued patent was involved in an interference. We combine four different

sources of data: (i) a database of interferences from newly-digitized Registers of Interferences

from the National Archives 1864–1901; (ii) summary statistics on patent interferences from

1950–1962 (Di Simone et al., 1963) and (iii) 1980–1993 (Calvert and Sofocleous, 1982, 1986,

1989, 1992, 1995) and (iv) a database of patent interference decisions from 1998–2014.
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Figure 6: Between versus within class similarity over time
Notes: Similarity within and between technology classes, using S-BERT representations and 129 CPC classes. Annual
averages 1836–2022 shown.

First, we used purpose-digitized data from the Registers of Interferences in the USPTO

Records of the National Archives. We scanned and digitized 19,388 interference cases in 21

volumes of the Registers that spanned 1860–1908. (Appendix D.1 provides an example.)

The registers are organized chronologically by hearing date. We recorded the decision or

termination dates for each case, and total the number of cases terminated in each year.

Based on the ranges of hearing dates, the early (1860–1863) and late (1902–1908) volumes

appear to represent only partial years, so we use only years 1864–1901. On average, there

were 504 interferences terminated in each year during this period 1864–1901.

Second, we used summary statistics reported by Di Simone et al. (1963), Table 1.2, on

interferences terminated by year, 1950–1962. Only summary statistics—no case-level data—

were reported. Technically, these statistics were reported for each fiscal year versus calendar
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year. In these data, on average, 640 interferences were terminated in each year 1950–1962.

Third, we used summary statistics reported by Calvert and Sofocleous (1982, 1986, 1989,

1992, 1995) of totals interferences terminated in 3-year periods. (Again, these totals are for

fiscal years.) On average, 237 interferences were terminated yearly 1980–1994.

Finally, we used interference case decisions 1998–2014 issued by the Board of Patent

Interferences and encoded from the USPTO eFOIA site by Ganguli et al. (2020). Based on

these data, on average, 76 interferences were terminated annually during this period.18

Next, we estimate the rate of interference, that is, the probability that an issued patent

interfered with another application.19 For each year, we divide the number of total inter-

ferences by the number of total patents issued. Figure 7 shows a steady decline in the

rate of interference in the 150 years between 1864–2014. Based on the Registers data, the

average rate of interference over 1864–1901 was 2.71%. Based on Di Simone et al. (1963),

the average rate of interference over 1950–1962 was 1.43%. Based on Calvert and Sofocleous

(1982) et al., the average rate of interference over 1980–1994 was 0.30% Finally, based on

the eFOIA decisions, the average rate of interference over 1998–2014 was 0.05%. Thus, the

decline in interference rate is consistent with measured declines in similarity according to

S-BERT-based representations.

5. Why is S-BERT Better?

In this section, we further explore the performance differences between S-BERT and TF-

IDF. First, we compare a 21st-century bicycle patent and a 19th-century velocipede patent

to illustrate S-BERT’s ability to identify semantic similarities. Second, we examine unigram

frequencies in the Google Books Ngram database. Unigrams characteristic of patent pairs

18It is likely that this slightly undercounts the actual number of interferences, since some interferences
were terminated before they reached the Board of Patent Interferences. We can determine this based on
interference numbers, which are assigned sequentially. Among the case decisions issued between 1998–2014,
we can thus infer that there were 2,403 cases declared between 1991 and 2014, or about 104 interferences
declared per year.

19A limitation of this exercise is that dates of interference termination and patent issuance likely lag behind
the dates of actual invention and application. Typical lags might be up to 2 years.
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Figure 7: Interferences per issued patent

with high TF-IDF similarity overweight period-specific language, thus explaining its effective-

ness in period- but not class-based tasks. Appendix C presents details of the characteristic

unigram methodology, an additional Google Books Ngram analysis, and a synonym-based

analysis that further highlights S-BERT’s ability to capture semantic similarity.

5.1. Example: Bicycle versus velocipede

Figure 8 shows a bicycle patent from the 21st century and a velocipede patent from the

19th century. Despite these patents originating from different time periods and employing

distinct terminologies, S-BERT successfully identifies them as similar, positioning them in

the 87th percentile of similarity. At the same time, the similarity according to TF-IDF is 0.

This example illustrates the S-BERT’s ability to capture semantic nuances and contextual

similarities despite changes in language.
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Patent 1: US7562890B2 (2009) Patent 2: US93016A (1869)

Front frame for a bicycle. IMPROVED VELOCIPEDE.
1. A front frame for a bicycle,
comprising: two first inner tubes abutted
together; two second inner tubes abutted
together; an upper tube of cured
multiple layers of fiber reinforced rein
material wound around the two first
inner tubes so that there is no crack
between the upper tube and . . .

In the velocipede as constructed, and in
combination therewith, the
friction-clutch, spurs, arms, cross-bar,
cam, guide-wheel, with hollow rim and
axle, arranged and operated
substantially as described. In witness
whereof, I have hereunto set my hand
and seal.

Figure 8: A conceptually similar pair of patents from different time periods
Notes: Velocipede is a type of bicycle. The text is truncated to the title and the beginning of the claims section of the
patents. Typos due to OCR were fixed for this illustrative example. According to S-BERT, these patents are in the 87th
percentile of similarity, whereas according to TF-IDF, the similarity is 0.
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Both patents introduce improvements in the design or function of two-wheeled vehicles.

A velocipede is an archaic term for a type of bicycle. Although Patent 1 focuses on the

“front frame for a bicycle” while Patent 2 is more broadly about an “improved velocipede,”

they both involve common mechanical features such as tubes, frames, and axles. However,

the patents do not share many common terms. Patent 1 talks about “front frame,” “inner

tubes,” “upper tube,” while Patent 2 mentions “friction-clutch,” “spurs,” “arms,” etc.

S-BERT takes into account not just specific words, but also the context in which these

words appear. Words with similar meaning that frequently appear in similar contexts will be

assigned similar S-BERT vectors. Thus, S-BERT representations reflect that both patents

are about two-wheeled vehicles, even if they use different terms. S-BERT is trained on

a diverse dataset, which includes technical language. It can therefore encode terms like

“frame,” “tubes,” and “axle” as related in general, even if they appear in different contexts.

TF-IDF is a simpler bag-of-words model that does not capture meaning in the same way

(see Smith, 2020). It considers only the frequency of individual words in each document and

in the corpus as a whole. TF-IDF treats distinct terms such as “bicycle” and “velocipede” as

unrelated concepts. In sum, S-BERT is able to better capture the semantic and contextual

similarities between these two patents that describe similar inventions but do not share a

common vocabulary.

5.2. TF-IDF overweights period-specific words versus universal synonyms

The bicycle/velocipede example suggests that TF-IDF overweights period-specific terms

like velocipede, leading it to assign low similarity to pairs that might describe the same idea

with different terms. Here we extend that analysis. We hypothesize that terms used in

patent pairs assigned high similarity by TF-IDF should have a higher variance of usage over

time. These period-specific terms might be archaic or modern, or they may have irregular

fluctuations in usage.

We use the Google Books Ngram database. We identify characteristic tokens that differ-

entiate patent pairs based on their similarity scores. Our analysis categorizes patent pairs
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(a) Top-5 characteristic unigrams for each representation

(b) Hand-picked example 1

(c) Hand-picked example 2

Figure 9: Frequency of characteristic unigrams of the pairs of patents classified as similar by
S-BERT and TF-IDF
Notes: The plot is based on the Google Ngram Corpus (1850–2019). Frequency is normalized to the largest frequency on each
plot. The number after the unigram label is the coefficient of variation, defined as the standard deviation divided by the
mean. The characteristic unigrams are computed using the Monroe et al. (2017) algorithm.
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into three groups: (i) those identified as similar by both S-BERT and TF-IDF, (ii) those rec-

ognized as similar only by S-BERT, and (iii) those recognized as similar only by TF-IDF. We

exclude pairs with mutual agreement between models and determine characteristic unigrams

for the latter two categories. Appendix C details the methodology and presents additional

analyzes.

Figure 9 presents some illustrative examples of unigram frequencies over time. Among the

top-five most characteristic unigrams, TF-IDF unigrams are more volatile, which indicates

more time-specific word usage.

We further hand-picked examples of conceptually-similar words in panel (b). “Dresser,”

characteristic of S-BERT similar pairs, exhibits moderate use with little variation until the

2000s. In contrast, “vanity,” characteristic of TF-IDF similar pairs, exhibits more volatility,

steadily dropping in usage throughout the period between 1850 and 1970, followed by a small

rise. Another example is shown in panel (c). “Verbal” and “cognitive” both increase after

1950. But the increase is more dramatic for “cognitive,” and therefore this term characteristic

of TF-IDF similar pairs has a larger coefficient of variation.

6. Conclusion

In this paper, we developed a pipeline for the construction, validation, and selection of

measures of economic interest derived from patent text. Innovation economists should pay

attention to the choice of text representation, since different choices can significantly affect

conceptual validity and the results of subsequent economic analyzes.

The construction of similarity and other measures based on patent text can be separated

into three distinct steps: representation, measurement, and validation. The first step maps

each patent to a location in idea space; the second step measures a concept of economic

interest using representations produced by each of several candidate models; and the third

step validates these representations using purpose-built, domain-specific tasks to select the

best mapping.
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We designed three novel, domain-specific validation tasks that compare the performance

of four leading and widely-used NLP models. Each task uses a sample of patent pairs with

human judgments of similarity. We then assessed how well different representations agree

with human judgment. Our validation results suggest that S-BERT produces measures of

patent similarity that more closely match human judgment compared with other leading

NLP models.

Finally, we constructed validated measures of invention similarity for US utility patents

issued 1836—2022. S-BERT-based estimates of patent similarity show a secular decline in

invention similarity. In contrast, measures based on TF-IDF show ambiguous or diverging

patterns. The rate of patent interference also exhibits a secular decline, reproducing the

S-BERT result.

Our results are useful to many applications in the economics of science and innovation.

Our publicly-available S-BERT vector representations of the text of every US issued patent

1836—2022 can be used by researchers to compute patent similarity or other downstream

measures. These can be used in many applications, such as for constructing matched controls

in studies of localized knowledge spillovers, or for empirical implementations of theories that

involve the space of ideas. Our approach can also be used to develop new measures of the

space of ideas using other types of text, such as scientific papers.
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Appendix A. Visualization of Embedding Spaces

This section describes the process we followed to generate the visualizations discussed in

Section 2.

The raw data are obtained using the same sampling strategy outlined in the class and

period validation section (3.2). This strategy involves sampling patents from specified classes

as categorized by the USPTO, across distinct 25-year periods ranging from 1850 to 2023.

We then plot 2-dimensional projections of the embedding spaces, where individual patents

are marked with color according to their respective class or period. This visualization tech-

nique provides a geometrically intuitive perspective of the innovation space. It also lays a

visual foundation for comparing the efficacy of different embedding techniques like S-BERT

and TF-IDF.

Appendix A.1. Methodology

The primary method we employ for visualization is dimensionality reduction through the

Uniform Manifold Approximation and Projection (UMAP) technique. UMAP is noted for

its ability to preserve both global and local structures during reduction, making it, roughly

speaking, a non-linear variant of Principal Component Analysis (PCA).

To speed up the computation, we conduct the initial dimension reduction using PCA,

which reduces the dimensionality of the S-BERT and TF-IDF representations to 50. Subse-

quently, UMAP is applied to these reduced representations. This two-step process harnesses

the computational efficiency of PCA while benefiting from the geometric qualities of UMAP.

We manually tuned UMAP hyperparameters to achieve a more clustered representation

that looked more like an “archipelago” than a singular “continent.” This tuning aids in

better visual separation among clusters within the innovation space.

Appendix A.2. Plotting

One of the challenges encountered during visualization was the overlapping of data points,

especially in dense clusters. To mitigate this, a jittering technique was employed which
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disperses each point slightly within its local neighborhood to reduce overlap, hence enhancing

the visibility of individual clusters. The jittering results in a boxier scatter plot, which is a

compromise for better clarity.

The plots (refer to Figure 3) primarily serve as illustrative tools, providing a more tangible

notion of the idea space. We use color coding to denote different patent classes and 25-year

periods in both S-BERT and TF-IDF projections. Despite the inherent distortions, some

observations could hint at underlying structural differences between the representations.

At first glance, it’s clear how the representations reflect the class and period structure.

S-BERT representations show clearer class boundaries compared to TF-IDF representations,

suggesting that patent clustering is closer to the class structure. On the other hand, TF-IDF

periods seem less mixed compared to S-BERT periods, although this difference is more subtle.

These visual patterns match the results we discussed in Section 3.2, where we evaluated how

well the representations classify patent pairs into the same class and same period categories.

This consistency between visual observations and analytical findings is encouraging.

It is harder to draw conclusions from the general layout because of the distortions inherent

in the projection project. However, some observations stand out. For example, TF-IDF has

more “dust” compared to S-BERT, which has more of an “empty space.” Also, the extended

x and y tails in TF-IDF, hidden due to winsorizing, hint at a possible trend where variability

in expressing similar ideas with different words pushes these representations farther from the

core.

Lastly, we explored the clusters qualitatively using an interactive tool. While we don’t

expect every aspect of patent positions to be interpretable, some interesting observations

came to light. For instance, in Panel A of Figure 3, a blue square around (-5, 0), represent-

ing the electricity class, contains many semiconductor patents. This square sits between the

light blue square on its left representing materials science patents (Chemistry and Metal-

lurgy class) and a more general blue electricity patent cluster on its right. Although such

observations are anecdotal, they help build trust in the model, especially when supported by
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more rigorous analyzes. Such qualitative insights, alongside quantitative evaluations, enrich

our understanding of the embedding spaces and their ability to capture the complex nature

of innovation.

The visualizations provide insight into how different representations can result in

meaningfully different similarity measures, highlighting the importance of making grounded

choices in representations when studying innovation.

Appendix B. Robustness of S-BERT representations

In this section, we provide additional evidence that economic measurement depends on

representation by performing a robustness analysis of Kelly et al. (2021).

Kelly et al. (2021) use a backward-looking variant of the traditional NLP method TF-

IDF, which they call TF-BIDF (“B” for backward). They measure “breakthrough” patents as

those that are dissimilar to past patents but very similar to future patents. Intuitively, using

only the backward-looking corpus to measure (inverse) document frequency avoids penalizing

especially influential patents that introduce terms that are widely-used in subsequent patents.

Here, we briefly summarize some key steps in the Kelly et al. (2021) pipeline. First, create

representations of patent texts using TF-BIDF. This is the “breakthrough” or “importance”

measure. Second, residualize this breakthrough measure on year fixed effects, so that im-

portance is measured relative to the average issued patent in each year. Third, identify the

all-time top 10% of patents in the residualized breakthrough measure. Finally, plot the rate

of breakthrough patents normalized by total US population in each year. The result is their

Figure 4, Panel A, reproduced in Figure B.10 below.
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Figure B.10: Reproduction of Kelly et al. (2021), Figure 4, Panel A

We explore the sensitivity of their results along several dimensions. The most important

and relevant for the current study is (i) using S-BERT versus TF-BIDF for the represen-

tations. We also explore robustness to two other key decisions in the Kelly et al. (2021)

pipeline: (ii) residualizing the breakthrough measure on year fixed effects, (iii) normalizing

the rate of breakthrough patents by total US population.

Figure B.11, Panel A shows our replication of the Kelly et al. (2021) result. There are

two primary differences in our replication. One, we are using a different source corpus—our

source is ProQuest database of claims versus Kelly et al. (2021)’s Google Patents digitized

text. Two, for computational reasons we simplify the computation of the backward-looking

IDFs to the prior five calendar years. Kelly et al. (2021) instead compute a backward IDF

for each patent up to five years prior to the date of issue. Thus, there are slight differences

in our replication methodology.

Overall, comparing Figure B.11, Panel A with Figure B.10, we are able to closely replicate

the Kelly et al. (2021) result. The qualitative dynamics are very similar, with fluctuations in

the rate (per US population) of breakthrough patents, followed by a sharp increase starting

around 1980. The overall correlation coefficient between the two series is 0.729.

Figure B.11, Panel B shows the number of breakthrough patents by year, without normal-

izing by US population. There is a secular increase in the number of breakthrough patents
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Figure B.11: Replication and robustness of (Kelly et al., 2021) using TF-BIDF representa-
tions

over time.

Figure B.11, Panel C shows an alternative normalization, using total issued patents by

year instead of total US population by year. Unlike the first two panels, the choice of

normalization is consequential: while there were more breakthrough patents in recent years,

as a share of total issued patents, the peak rate of breakthrough patents was before 1870.

Finally, Figure B.11, Panel D shows the effect of residualizing the breakthrough measure

on year fixed effects. While there is still an increase in the rate of breakthrough patents

since 1980, there was also a similarly high rate of breakthrough patents in the 1860s.

Figure B.12, Panel A shows robustness of the baseline Kelly et al. (2021) result to using

S-BERT representations versus TF-BIDF. Qualitatively, there are some similar dynamic

features. The rate of breakthrough patents appeared to increase significantly after 1980.
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Figure B.12: Robustness of (Kelly et al., 2021) using S-BERT representations

However, there were similar, although more modest in magnitude, booms in the rate of

breakthrough patents in the 1870s, 1930s, and 1960s. Thus, the recent increase in the rate

of breakthrough patents appears less unusual compared with historical episodes versus the

TF-BIDF results. Overall, the correlation with the TF-BIDF-based measure is 0.577.

Panel B shows similar dynamics compared with TF-BIDF-based measures in the total

number of breakthrough patents. Patent C shows similar sensitivity to the choice of normal-

ization.

Finally, Figure B.12, Panel D shows that the choice to residualize on year fixed effects

is less consequential using S-BERT representations versus TF-BIDF representations. The

comparison of Panels A and D in this figure implies similar trends in breakthrough patents.

In contrast, the comparison of Panels A and D in Figure B.11 implies different trends in

breakthrough patents.
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Overall, our analysis confirms the Kelly et al. (2021) finding that the rate of breakthrough

inventions is higher today compared with prior decades. That said, the choice of representa-

tion matters for measurement. Compared with TF-BIDF, S-BERT-based measures suggest

that the recent increase in breakthrough inventions is less unusual compared with historical

patterns. Moreover, S-BERT-based measures appear to be more robust and less sensitive to

decisions about how to process and residualize the data.

Appendix C. Why is S-BERT better?

In this section, we aim to further elucidate the performance differences between S-BERT

and TF-IDF.

Appendix C.1. Google Ngrams Analysis

To gain insights into the time-specific nature of the words that TF-IDF focuses on,

we turn to examining the tokens characteristic of patent pairs located closely in the TF-

IDF space through the lens of Google Ngrams data. This analysis demonstrates that the

unigrams characteristic of patent pairs with high TF-IDF similarity tend be more heavily

used in specific time periods compared to the S-BERT unigrams, which can explain the

outperformance of TF-IDF in the period classification task.

The Google Books Ngrams dataset is a collection of word frequencies derived from the

Google Books corpus,20 which contains a vast array of books published over several centuries.

This dataset enables the analysis of the usage patterns of words and phrases over time,

providing a valuable resource for studying the evolution of language.

In NLP, characteristic tokens or words are specific lexical features that are highly indica-

tive of a particular category, topic, or sentiment. These tokens serve as markers that can

help in classifying or differentiating texts based on the target concept of interest, such as

the party alignment of a political speech, or, in our case, whether a patent pair is deemed

20Specifically, we use the “English 2019” corpus accessed using ngramr library in R programming language
(Carmody, 2023).
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similar by S-BERT or TF-IDF. We use the Monroe et al. (2017) method implemented in

the Schnoebelen et al. (2022) R library to systematically identify characteristic words. The

method employs Bayesian shrinkage and regularization techniques to select and evaluate the

relative importance of words that capture the target semantic concept.

Finding characteristic words requires a corpus of text split according to a categorical

variable, which we obtain the following way. From the corpus of 11,200 patents used in the

class and period validation task, we selected pairs that were in the top quartile of similarity

scores according to S-BERT, TF-IDF, or both. We then categorized these pairs into three

classes:

1. The representations agree

2. S-BERT identifies as similar, but TF-IDF does not S-BERT Yes category

3. TF-IDF identifies as similar, but S-BERT does not TF-IDF Yes category

We discard the pairs where both representations agreed and use the rest of the pairs as the

input to Monroe et al. (2017) algorithm to find unigrams most characteristic of S-BERT and

TF-IDF similarity. The output of the algorithm is the list of characteristic words for the

categories S-BERT Yes and TF-IDF Yes along with the weighted log-odds that quantify the

extent to which a unigram is more likely to appear in one category of patent pairs compared

to the other.

Once the characteristic unigrams are obtained, we analyze their frequency from 1850 to

the present using the Google Books Ngram corpus. For each unigram, we calculate the mean

and standard deviation of its frequency over time. To obtain a measure of variation that is

comparable between different unigrams we compute the coefficient of variation, defined as

the standard deviation divided by the mean.

Figure C.13 demonstrates the average coefficient of variation for S-BERT Yes and TF-

IDF Yes characteristic unigrams. The difference is large, especially for the unigrams with

the highest weighted log-odds. For the top 100 unigrams, the S-BERT coefficient of variation

is 0.7 compared to 1.2 for TF-IDF (which means that the average standard deviation is 70%
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and 120% of the mean, respectively). As we increase the number of unigrams we include in

the computation, the difference becomes smaller, but is always large: for all unigrams, the

S-BERT coefficient of variation is 0.74 compared to 0.95 for TF-IDF.

Figure C.13: Average over-time coefficient of variation of the frequency of characteristic
unigrams of the pairs of patents classified as similar by S-BERT and TF-IDF
Notes: The unigram frequency information is from the Google Ngram Corpus (1850–2019). The coefficient of variation is

defined as the standard deviation divided by the mean. The characteristic unigrams are computed using the Monroe et al.

(2017) algorithm.

The higher coefficient of variation of unigrams in the TF-IDF Yes category suggests that

TF-IDF is sensitive to the linguistic peculiarities of specific time periods. This provides

strong evidence for why TF-IDF is more effective at categorizing patents based on their

temporal context.

Appendix C.2. Synonyms Analysis

The objective of this analysis is to delve deeper into the contrasting types of similarity

captured by S-BERT and TF-IDF, particularly focusing on why S-BERT excels in class val-

idation while TF-IDF shines in the period task. Our hypothesis posits that S-BERT, unlike

TF-IDF, assigns a relatively lower weight to exactly overlapping words when determining

similarity between patent pairs, and leans more towards semantic similarity and other forms

of word “interchangeability.” This distinction becomes apparent when analyzing patents

within the same period that tend to exhibit period-specific overlapping language, even if

they belong to different classes. Conversely, patents from the same class but different peri-
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ods are more likely to exhibit similarity at a conceptual or idea level, which is the main type

of similarity we aim to capture.

In preparing the data for analysis, we further stratified patent pairs from the Class/Period

validation sample into two strata: tfidf yes, S-BERT yes, and agree (using the 75th per-

centile similarity cutoff for yes). For instance, S-BERT yes implies that according to S-BERT

this pair is similar, but according to TF-IDF, it is not. We further categorized them as

same class, same period, both same, and neither same. To focus on informative cases,

pairs in agree, both same, and neither same categories were excluded. A sample of 200

pairs from each of the 4 strata (800 pairs in total) was selected.

To enrich our analysis, we employed WordNet, a lexical database of English (Miller,

1992). In WordNet, nouns, verbs, adjectives, and adverbs are grouped into sets of synonyms

(synsets), each expressing a distinct word sense. These synsets are interlinked by means

of semantic relations. The relations include hypernyms (more abstract terms), hyponyms

(more specific terms). For each word in each patent, we listed all word senses. For each

word sense, we found the set of synonyms, hypernyms, and hyponyms. These, along with

the original word, were concatenated. For instance, for the word “air,” we obtained a set of

related terms encompassing synonyms like “breeze,” hypernyms like “gas,” and hyponyms

like “zephyr.”

Each patent was then represented as the set of unique tokens in it (each counted once)

and separately as the set of unique tokens plus their synonyms, hypernyms, and hyponyms.

For each document pair, we calculated the exact word overlap and the word plus synonym

plus hypernym plus hyponym overlap (Word+ overlap).

We then conducted a pair of analyzes with the aim of investigating whether the same

text characteristics drive both S-BERT similarity and belonging to the same class cate-

gory, as well as TF-IDF similarity and belonging to the same period category. In the first

analysis of the pair, we ran regressions with S-BERT and TF-IDF on the LHS and the text

characteristics (exact word overlap and Word+ overlap) on the RHS. This analysis aimed
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to explore the relationship between the similarity scores generated by S-BERT and TF-IDF

and the text characteristics.

In the second analysis of the pair, we conducted a PR AUC analysis with same class and

same period categories as the dependent variables and the text characteristics as predictors.

This analysis aimed to explore how well the text characteristics predict the categorization

of patents into same class and same period categories.

The findings from both analyzes exhibited similar patterns: S-BERT similarity and

same class categorization were both driven by Word+ overlap, while TF-IDF similarity

and same period categorization were both driven by direct word overlap. These patterns

led us to conclude that S-BERT’s superior performance in same class categorization can be

attributed to its ability to capture the semantic similarity of words present in the patents,

whereas TF-IDF’s superior performance in same period categorization can be attributed to

its ability to capture direct word overlap.

The findings are shown in Table C.7 and Figure C.14, exhibiting expected patterns.

Table C.7 quantitatively shows how WordNet-derived measures relate to S-BERT and TF-

IDF similarity scores. The regression coefficients indicate that S-BERT’s similarity scores are

negatively associated with direct word overlap but positively associated with Word+ overlap,

suggesting a stronger emphasis on semantic similarity (the negative coefficient on direct word

overlap is not surprising, given our sampling strategy’s focus on patent pairs where the two

models disagree). Conversely, TF-IDF’s similarity scores are positively associated with direct

word overlap, indicating a preference for exact lexical matching.
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Table C.7: Regression results for similirty scores and Wordnet-based measures on the
S-BERT yes and tfidf yes patent sample

TF-IDF S-BERT
(Intercept) 0.31∗∗∗ 0.58∗∗∗

(0.02) (0.02)
Word Overlap 0.39∗∗∗ −0.29∗∗∗

(0.04) (0.04)
Word+ Overlap −0.01 0.13∗∗

(0.04) (0.04)
R2 0.15 0.06
Adj. R2 0.15 0.06
Num. obs. 800 800
∗∗∗p < 0.001; ∗∗p < 0.01; ∗p < 0.05

Notes: The table presents the coefficients from a regression analysis where the dependent variables are the similarity scores
generated by TF-IDF and S-BERT. The independent variables are Word Overlap, representing the exact word overlap
between patent pairs, and Word+ Overlap, representing the overlap including synonyms, hypernyms, and hyponyms. The
negative coefficients for S-BERT on Word Overlap and for TF-IDF on Word+ Overlap are observed due to the sampling
strategy focusing on patents where the two models disagree.

Following the tabular analysis, Figure C.14 visually represents the Precision-Recall Area

Under Curve (PR AUC) values for Word and Word+ overlap measures across same class

and same period categorizations. In the same class categorization, it is discernible from the

figure that Word+ overlap (sim combined) yields a higher PR AUC value of 0.49 compared to

the Word overlap (sim 1 2) value of 0.43, underscoring the importance of capturing semantic

relationships in addition to exact word overlap for classifying patents within the same class.

Conversely, in the same period categorization, Word overlap outperforms Word+ overlap

with a PR AUC value of 0.588 against 0.512, indicating that direct word overlap is more

pertinent for capturing period-specific similarities. The Figure also shows that, S-BERT

performs best on same class task and TF-IDF performs same period task on the sub-sample

used in this analysis, conforming with the full sample results discussed in Section 3.2.
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(a) Same Class; Similarity (b) Same Period; Similarity

(c) Same Class; Wordnet (d) Same Period; Wordnet

Figure C.14: Similarity scores based on the S-BERT and TF-IDF representations and
Wordnet-based measures for categorizing patent pairs as belonging to the same class and
period
Notes: The sample includes patent pairs in the S-BERT yes and tfidf yes categories. We evaluate how well patent pairs can

be classified as belonging to the same class or the same quarter-century period using two sets of similarity scores, based on

S-BERT and TF-IDF representations, and two sets of Wordnet-based measures, Word Overlap and Word+ Overlap. “Word”

represents exact word overlap and “Word+” encompasses word overlap along with their synonyms, hypernyms, and hyponyms

as derived from Wordbet, a lexical database grouping English words into sets of synonyms and recording their semantic

relationships.

In conclusion, one of the mechanisms through which S-BERT better captures idea simi-

larity is through its ability to assign similar vectors to words located closely in the semantic

graph (synonyms, hypernyms, hyponyms). This is consistent with the properties theoreti-
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cally expected from S-BERT based on its architecture and training procedure. Our results

show that these properties are useful in innovation economics by allowing S-BERT to capture

the similarity of ideas in a way that transcends period-specific language.

Appendix C.3. Why is S-BERT better? Conclusion

The Google Ngrams analysis and the patent pair example collectively offer robust ev-

idence to support our initial observations. TF-IDF’s strength lies in identifying patents

from the same time period, primarily due to its sensitivity to words that are popular within

specific temporal contexts. Conversely, S-BERT proves superior at classifying patents into

the same technical class, given its ability to understand and capture the semantic essence

of the text, highlighted by its association with synonym, hypernym, and hyponym overlap

as opposed to the exact word overlap. These insights are important for choosing the more

appropriate model for specific downstream tasks.

Appendix D. Miscellanea

Appendix D.1. Photograph of the register of interferences

Figure D.15 shows an example page from one of the Register volumes. It displays two

cases. Both cases record hearing dates of January 7, 1890. The subject of the first case was

roll paper cutters and the competing inventors were named Ehrlich and Lawton. The case

was decided in favor of Lawton on January 11. The subject of the second case, Blaine v.

Hadley, was corn harvesters; the case was decided in favor of Hadley on April 29th.
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Figure D.15: Example page from Register of Interferences
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