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1 Introduction

Considerable evidence quantifies the scale and nature of agglomeration economies at the
regional and local labor market levels. Greenstone et al. (2010), Ellison et al. (2010), Bloom
et al. (2013), Faggio et al. (2017), Hanlon and Miscio (2017), and others all provide evidence
that firm and worker productivity are increasing in the prevalence of nearby firms to which
they are connected, with connectivity measured through input-output relationships, patent
citations or occupational similarity. There is also extensive evidence that firms and workers
in larger cities are more productive on average, with about half of city size wage premia
driven by greater returns to work experience in larger cities (Baum-Snow and Pavan, 2012;
De la Roca and Puga, 2017). The natural implication is that city scale enhances firm and
worker productivity, likely in part through spillovers that operate between firms and workers
at microgeographic spatial scales. Despite this extensive evidence for broad regions, little
empirical evidence exists about the magnitude and composition of productivity spillovers at
the very local level within cities.

Using panel data derived from corporate tax records on the universe of single-location
firms in Canada, this paper provides some of the first causal estimates of productivity
spillovers at small spatial scales for a broad set of firms and quantifies the underlying mecha-
nisms driving these spillovers. We find strong evidence of revenue and productivity external-
ities that operate between firms within areas of 75 meter to 250 meter radii. For groups of
firms within 75 meter radius areas, we find that the elasticity of revenue with respect to mean
revenue in a firm’s peer group is 0.016-0.018 for the average firm. We estimate an elasticity
of revenue with respect to aggregate peer group revenue of at most 0.003 percent. For a sense
of magnitude, these estimates indicate that going from the 10th to 90th percentile of peer
group spillovers across firms in our data increases revenue by 5 percent via linear-in-means
spillovers and up to an additional 2 percent via aggregate spillovers. This latter impact is very
skewed such that the majority of firms hardly benefit from local aggregate effects. These two
impacts are additive. Tests for mediation through industry input-output and occupational
similarity relationships across firms yield stronger evidence for the occupational similarity
channel. We also find that firms benefit slightly more from exposure to higher quality firms
in other two-digit industries than their own. Coupled with the dominance of linear-in-means
type externalities, we interpret our evidence as showing that learning or knowledge transfer
between nearby firms is the primary mechanism driving spillovers at microgeographic spatial
scales.

Through the use of counterfactuals, we investigate the extent to which sorting across space
and into peer groups on unobserved firm quality drives agglomeration economies. While we
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find strong evidence of sorting of firm quality on peer quality, this sorting is mostly accounted
for by differences in location fundamentals. Absent such sorting, aggregate firm revenue
through linear-in-means spillovers would be 0.6 percent lower, mostly because the highest
quality firms receive smaller spillovers in this environment. The sorting of higher quality
firms into denser employment subcenters is an important additional force, leading to up to
an additional 0.8 percent in aggregate revenue. When the linear-in-means and agglomeration
spillovers are both considered, our estimates indicate that aggregate revenue would be 0.7%
lower absent sorting across fixed locations with firms and 1.4% lower absent sorting across
all potential locations.

The use of restricted access administrative tax data on the universe of firms in Canada
is central to this analysis. We use information on sales, inputs, factor prices, and postal
codes for over 40,000 firms in more than 30,000 locations for each year 2001-2012. We
focus on the densest areas in Montreal, Toronto, and Vancouver, where postal codes are
less than 75 meters in radius. With reasonable assumptions about the data generating
process for revenue, also employed by De Loecker (2011), our identification strategy allows
revenue spillover estimates to be interpreted as TFP spillovers. Robustness checks using
direct TFPR estimates or revenue adjusted for endogenous price responses to changes in
peer group composition corroborate these assumptions.

Our empirical analysis adopts and extends a common specification in the peer effects
literature into the context of interactions between firms, a context that has not been consid-
ered beforehand in the literature in this way. In our empirical model, a firm’s log revenue
depends on a fixed firm-specific component and a weighted aggregate of this object for other
firms in the peer group conditional on local area-year and industry-year fixed effects. Our
key parameter of interest is the coefficient on this peer group aggregate. Arcidiacono et al.
(2012) (henceforth, “AFGK”) show how to estimate peer effects with panel data in analogous
environments in which children may sort across classrooms on fixed unobserved attributes.
We extend their setup to distinguish between the relative importance of aggregate versus
linear-in-means type spillovers, to recover the degree of complementarity between a firm’s
own unobserved fixed attributes and those of its peers, to distinguish between the relative
importance of different types of connectivity weights, and to measure the extent to which
spillovers decay spatially. Through specification of the weights that aggregate peer attributes,
we can measure each of these types of spillovers. Extension of the AFGK model to estimate
the impacts of multiple types of spillovers simultaneously facilitates this analysis. Such “horse
race” type specifications have not been explored much in the peer effects literature but are
essential to recovering these important insights.1

1
Liu et al. (2014), which simultaneously estimates impacts of linear-in-means and aggregate type spillovers
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Our fundamental source of identifying variation comes from changes in the composition
of firms over time within small areas. We use this sort of variation to separately identify
spillovers from location fundamentals or “contextual effects” of neighborhoods. In addition
to selection on time-invariant unobserved attributes, one may be additionally concerned that
firm location choices may depend on localized productivity, infrastructure or worker amenity
shocks. If neighborhoods with improving business environments attract higher quality new
arrivals and those with deteriorating business environments see departures of higher quality
firms, our spillover estimates would be overstated. On the other hand, if deaths of low
quality firms disproportionately occur in poor business environments, our estimates would
be understated. As examples of such neighborhood attributes that may matter, a refurbished
road, new transit station, or upgraded Internet service may both promote improved outcomes
for existing firms nearby and draw in new more productive firms. As such, the main threat
to identification is that the quality of arriving or departing firms may be correlated with
unobserved trends in neighborhood fundamentals.

To account for the possibility that firms select locations in a way that is correlated with
such location-specific shocks, our primary identification strategy takes advantage of the spa-
tial granularity in our data and includes area fixed effects of a 500 meter radius interacted
with year. In robustness checks we additionally include 250 meter radius area fixed effects
not interacted with year. In this most saturated specification, identifying variation comes
from a combination of cross-sectional differences in firm composition in adjacent regions of 75
meter radius and differential changes in firm composition over time in these same peer groups
when compared within larger regions with a 500 meter radius. The inclusion of neighborhood
fixed effects coupled with changes in firm composition are important to identify peer effects
separately from location fundamentals.

The existence of frictions in commercial real estate markets in the central business district
areas of large cities and our focus on high skilled service industries gives support to our
identification strategy. In order to hedge against business cycle risk, landlords typically rent
out space on a rolling basis with 10 year commercial leases, generating smoother variation in
such turnover and making it more difficult for firms to coordinate on location. As a result, in
any given year there are typically few options available for new commercial space within a 500
meter radius. Bayer et al. (2008) employ a similar strategy in the residential housing market
context to quantify the extent to which neighbors provide each other with job referrals. Data
from dense locations provides identifying variation while simultaneously making it unlikely
that firm location choices could be correlated with annual shocks to small area fixed effects.
in the context of looking at peer effects on effort in studying and participating in school sport activities, is

an exception.

3



Our focus on high skilled services reduces the possibility that very local shocks to demand
conditions and associated changes in local output prices at spatial scales smaller than a 500
meter radius area may be driving results. Robustness checks that use some model structure
to account for endogenous price responses corroborate our more reduced form estimates.

At first blush, it might appear that our evidence that linear-in-means (peer effects) type
spillovers dominate simple aggregation (agglomeration) spillovers is at odds with observed
productivity and wage premia that are associated with city size. Coupled with our evidence
that higher quality firms experience larger spillovers from peer groups of the same quality
than do lower quality firms, however, our baseline results indicate an important interaction
between sorting and firm externalities that generates aggregate increasing returns at the city
level. That is, evidence in this paper shows that the existence of larger and more productive
firms in larger cities itself can generate agglomeration economies. All of this is consistent
with Combes et al. (2012)’s evidence that static firm TFP distributions have higher means
and more right dilation in larger cities. That is, the “Plant Size-Place Effect” of larger firms
in larger cities (Manning, 2009) also means there will be larger firm-firm spillovers in larger
cities, resulting in higher aggregate productivity. This is the firm level counterpart to Baum-
Snow and Pavan (2012) and De la Roca and Puga (2017)’s evidence that workers’ returns to
experience are greater in larger cities, and that this profile is increasing in worker ability.

Methodologically, our investigation is similar to a number of papers in the peer effects lit-
erature. Perhaps most closely related, Cornelissen et al. (2017) formulate a similar empirical
model to ours, in which a worker’s wage depends in part on spillovers from components of
coworkers’ wages that are fixed over time. Using administrative data from the Munich region
in Germany, they estimate wage elasticities to averages of their peers amongst those working
routine tasks within firms of about 0.05. In contrast to our results, they find smaller spillovers
for more skilled occupations, indicating a very different process for human capital spillovers
within vs. between firms. Our very localized evidence is in line with Moretti (2004), Kantor
and Whalley (2014), and Serafinelli (2013)’s more macro evidence on knowledge flows that
operate between firms.

We emphasize that while our analysis faces a number of identification challenges, we
formulate our empirical model such that it is not subject to the reflection problem. Given
the considerable empirical challenges associated with credible identification of “endogenous
effects” in which a firm’s outcome directly impacts other firm’s outcome (Manski, 1993; An-
grist, 2014), we do not attempt to isolate this component of our spillover estimates. Instead,
we follow Gibbons et al. (2015)’s advice and focus on estimating spillovers from exogenous
attributes of nearby firms, as captured in their estimated fixed effects. Indeed, we think our
setting is unlikely to generate much in the way of endogenous effects anyhow, as nearby firms
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in most industries have little reason to try to coordinate on revenue. Moreover, as we discuss
further below, our empirical model and identification strategy are explicitly formulated to
focus on recovery of exogenous effects only.2 Absent any endogenous effects, our elasticity
estimates can be interpreted as the ratio of the impact of the aggregated exogenous attributes
of peers to those of the firm’s own exogenous attributes.

This paper proceeds as follows. In Section 2, we develop a theoretical framework that
justifies and interprets our use of revenue as the main outcome variables of interest. Section
3 describes our empirical model, identification, and estimation. Section 4 describes the data
and sample. Section 5 discusses the main results. Section 6 presents counterfactuals oriented
toward isolating the impacts of firm sorting. Section 7 concludes.

2 Theoretical Framework

In this section, we lay out a conceptual framework that delivers empirical specifications
describing the operation of productivity spillovers between firms at microgeographic spatial
scales. Starting with a standard firm profit maximization problem, we derive an estimation
equation in which a firm’s log revenue (sales) depends on its own fixed effect and a weighted
aggregate of the fixed effects of its peers. The key parameter of interest to be estimated is the
elasticity of a firm’s log revenue to the weighted aggregate of its peers’ fixed effects. We show
that under certain conditions this parameter measures the average total factor productivity
(henceforth, “TFP”) spillover between firms within each peer group.

Our main estimation equation accommodates both perfectly competitive and monopo-
listically competitive environments. If output prices are exogenous, time-differencing log
revenue reveals that revenue innovations induced by changes in peer group composition must
be related to changes in firm TFP, with an adjustment for the variable input share. If output
prices are endogenous and specific to the firm, an increase in TFP reduces marginal cost,
thereby reducing the firm-specific output price. The magnitude of this endogenous price re-
sponse depends on both the size of the increase in TFP and the elasticity of demand faced by
the firm. Given measures of this demand elasticity, we can adjust revenue to account for this
endogenous price response, allowing us to recover measures of TFP spillovers under imperfect
competition as well. We note that estimated unadjusted revenue responses to changes in peer
composition if anything understate the true magnitude of spillovers, as they reflect in part
the negative impact on the output price. We discuss details of the perfect competition case
here and relegate a detailed discussion of the monopolistic competition case to Appendix 1.

2
Some of the most credible evidence of endogenous productivity spillovers uses a supply chain network

structure for identification, as in Bazzi et al. (2017).
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We think of firms as operating on an amount of space that is fixed in the short run. The
only way a firm can adjust the total amount of space it uses is to move to a different block
b. In the empirical work we vary the size of the block by aggregating postal codes to areas of
radius 75 to 250 meters. The short-run profit of firm i in block b and industry k at time t is

⇡i,b,k,t = pi,b,k,tAi,b,k,tL
✓k
i,b,k,t � wB(b),k,tLi,b,k,t � Fi,b,k,t.

The key object of interest in this expression is the TFP parameter Ai,b,k,t, which is firm-
year specific, and is influenced by location fundamentals, industry, and fixed attributes of
neighboring firms. The variable input quantity is Li,b,k,t, which we think of mostly as labor.
For small adjustments in Li,b,k,t, which may occur year to year in response to changes in pi,b,k,t,
Ai,b,k,t, and wB(b),k,t, the short-run production technology is decreasing returns to scale. We
allow the variable input share ✓k < 1 to differ across industries. The input price wB(b),k,t is
determined at a broader level of spatial aggregation B(b) than the block and thus can be
controlled for with local area and industry fixed effects interacted with time. If firms are
price takers, the output price pi,b,k,t = pB(b),k,t can also be controlled for with local area and
industry fixed effects interacted with time. Empirically, we focus on the high skilled services
sector so output prices are likely to be determined at a broader level of spatial aggregation
than the block. With market power, output prices differ across firms as developed Appendix
1. The fixed cost Fi,b,k,t captures real estate and capital inputs, which are fixed in the short
run, but whose price can vary over time and space.

Firm log revenue in block b is

lnRi,b,k,t = ln pB(b),k,t + lnAi,b,k,t + ✓k lnL
⇤
i,b,k,t, (1)

where L⇤
i,b,k,t is the variable input demand function. Substitution of the input demand func-

tion into (1) yields the following reduced form expression for log revenue

lnRi,b,k,t =
✓k

1� ✓k
ln ✓k +

1

1� ✓k
ln pB(b),k,t +

1

1� ✓k
lnAi,b,k,t �

✓k
1� ✓k

lnwB(b),k,t. (2)

The goal of the empirical work is to piece out productivity spillovers from the relationship
between variation in peers’ log revenue and firms’ own log revenue. Doing so requires holding
constant location-specific attributes of wages and output prices, which we control for with
various fixed effects described below. Conditional on output prices and wages, (2) thus
indicates the extent to which shocks to log revenue that spill over from nearby firms fully
reflect log TFP spillovers between firms. In particular, conditional on the output price and
variable input cost, an observed 10 percent shock to log revenue would reflect a 3.3 percent

6



change in TFP given a variable input share of 70 percent.

2.1 TFP Spillovers

To complete the structural representation of our estimation equation, we specify the process
through which we conceptualize TFP spills over between nearby firms. We allow firm i’s
TFP in year t to depend on a firm-specific component that is fixed over time ↵A

i , spillovers
from a weighted aggregate of this same object in all other firms j in block b at time t, and
area-industry-time fixed effects. Put together, we have the following data generating process
for firm i’s TFP at time t:

lnAi,b,k,t = ↵A
i + �A

B(b),k,t + �A

2

4
X

j2Mb,t, 6=i

!ij(Mb,t)↵
A
j

3

5+ "Ai,b,k,t. (3)

�A is the key object in this equation that we aim to estimate. It denotes the elasticity of firm
i’s TFP with respect to the aggregation of firm-specific component of TFP that is fixed over
time across other firms in firm i’s peer group. In the bulk of our empirical work, we summarize
this object as one unified “average treatment effect” parameter, as is standard in the peer
effects and TFP spillovers literatures. We also investigate the degree of complementarity
between ↵A

i and peer group quality.
Local area-industry-year fixed effects �A

B(b),k,t capture a combination of location funda-
mentals and industry level TFP shocks. In our baseline specification, connectivity weights
!ij(Mb,t) are equal across peers. To study the nature of spillovers, we also impose weights
measuring input-output relationships, occupational similarity, or industry similarity between
firm i’s industry and firm j’s industry, with details in Section 4.3. Weights are normalized
in “linear-in-means” specifications and are unscaled in “agglomeration” specifications. Mb,t

denotes the set of firms in block b at time t.
In order to distinguish between mechanisms driving agglomeration spillovers at a mi-

crogeographic scale, some of our empirical work looks at “horse races” between different
weighting schemes. These horse races are either between linear-in-means and agglomeration
type spillovers or between different types of spillovers given linear-in-means or agglomeration
aggregation schemes.3 In these cases, (3) becomes

lnAi,b,k,t = ↵A
i + �A

B(b),k,t + �A
1

2

4
X

j2Mb,t, 6=i

!1
ij(Mb,t)↵

A
j

3

5+ �A
2

2

4
X

j2Mb,t, 6=i

!2
ij(Mb,t)↵

A
j

3

5+ "Ai,b,k,t.

3
For computational reasons and because we only have independent identifying variation across peer group

composition, we limit all horse races to be between only two different peer group compositions at a time.
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2.2 Structural Interpretation of Revenue Spillovers

The specification of our empirical model relates an aggregation of peers’ revenue to a firm’s
own revenue in year t, taking the same form as in equation (3). Our baseline estimation
equation takes the following form closely following that in Arcidiacono et al. (2012)

lnRi,b,k,t = ↵R
i + �R

B(b),k,t + �R

2

4
X

j2Mb,t, 6=i

!ij(Mb,t)↵
R
j

3

5+ "Ri,b,k,t. (4)

The model shows how to assign structural interpretations to each empirical model parameter
in (4) and be clear about the conditions under which the reduced form parameter �R identifies
the structural parameter �A. Inserting (3) into the total revenue equation (2) delivers the
structural interpretation of each parameter in (4).

We first consider the interpretation of local area-year and industry-year fixed effects
�R
B(b),k,t. Once these are understood, it is more straightforward to see what firm-specific

factors remain. Conceptually, �R
B(b),k,t are intended to control for variable input prices, lo-

cation fundamentals, and industry-specific components of productivity and output demand.
The empirical work explores two specifications of these fixed effects: 1) 500 meter radius area
indicators interacted with year fixed effects and 2-digit industry indicators interacted with
year fixed effects and 2) the same with the addition of 250 meter radius area fixed effects.
Future robustness analysis will also consider 500 meter radius areas doubly interacted with
year fixed effects and 2-digit industry fixed effects.

Under perfect competition, the structural interpretation of the fixed effects in (4) are

�R
B(b),k,t =

✓k
1� ✓k

ln ✓k +
1

1� ✓k
ln pB(b),k,t �

✓k
1� ✓k

lnwB(b),k,t +
1

1� ✓k
�A
B(b),k,t.

These fixed effects capture location and industry fundamentals, spatial variation in variable
input prices, and industry specific output prices.

The structural interpretation of ↵R
i is determined jointly by the firm-specific fixed effect

term and the spillover term. If the firm-specific fixed effect in (4) is set to ↵R
i = 1

1�✓k(i)
↵A
i ,

the remaining terms in (4) are

�R
X

j2Mb,t, 6=i

⇥
!ij(Mb,t)↵

R
j

⇤
+ "Ri,b,k,t =

1

1� ✓k(i)
�A

X

j2Mb,t, 6=i

⇥
!ij(Mb,t)↵

A
j

⇤
+

1

1� ✓k(i)
"Ai,b,k,t.

If all firms in firm i’s peer group have the same variable input share, revenue spillovers �R

directly measure TFP spillovers �A. Our empirical setting also allows for interpretation of
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unadjusted revenue spillover estimates as TFP spillovers under monopolistic competition and
CES demand (constant markups) if all firms in firm i’s peer group have the same variable
input share and markup, as discussed in Appendix 1. This argument exhibits one advantage
of focusing on high skilled services firms only, as their variable input shares and market
power are likely to be similar across firms. If variable input shares and markups are not the
same for all firms in a peer group, the structural interpretation of ↵R

i is more complicated
and the structural error "Ri,b,k,t includes a peer group aggregation component. In this case,
�R no longer strictly measures TFP spillovers. However, subject to validity of our primary
identification strategy discussed in the following section, it still measures revenue spillovers
holding input costs, a component of output prices and local area-industry-time drivers of
TFP constant.

In a robustness analysis, we employ two strategies to accommodate differences within peer
groups in variable input shares and markups in order to recover estimates of TFP spillovers.
Our first strategy uses revenue adjusted for market power as an outcome. This adjustment
allows us to isolate firm fixed effects as the permanent firm-specific component of TFP and
the TFP spillover parameter �A is then directly estimated. As a second alternative strategy,
we use a direct measure of firm-year TFPR as an outcome. This strategy has the disadvantage
of not separating out impacts on prices from quantities. See Appendix 2 for details.

3 Empirical Implementation

We consider data generating processes in which there is productivity diffusion between nearby
firms. Our baseline estimation equation relates outcome yi,k,b,t of firm i operating in industry
k and peer group b at time t to peer outcomes using the following specification:

yi,k,b,t = ↵i + �B(b),t + ⇢k,t + �
X

j2Mb,t, 6=i

!ij(Mb,t)↵j + "i,b,k,t. (5)

We use log firm sales revenue as our primary outcome of interest. Robustness checks instead
use a measure of TFPR and revenue adjusted for market power as alternative outcomes.

In (5), ↵i is a firm fixed effect, �B(b),t is a local area-year specific fixed effect that captures
access to local productive amenities or local labor supply conditions, and ⇢k,t is an industry
and year specific fixed effect capturing secular trends in industry-specific productivity, wages
and/or output prices. The key predictor variable,

P
j2Mb,t, 6=i !ij(Mb,t)↵j, is an aggregate of

the fixed component of this same outcome in nearby firms at time t, where the weights depend
on some measure of proximity between firm i and firm j at time t. Weights are normalized to
sum to

P
j2Mb,t, 6=i !ij(Mb,t)

|Mb,t|�1 in linear-in-means specifications and are unscaled in agglomeration
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specifications. Most of our empirical work uses “basic weights” in which !ij(Mb,t) =
1

|Mb,t|�1

in the linear-in-means specification and !ij(Mb,t) = 1 in the agglomeration specification. � is
the main parameter of interest and captures the average total spillover effect of peers’ fixed
attributes on a firm outcome. The firm fixed effects ↵i are economically informative measures
of firm quality. We use estimates of ↵i to investigate the importance of sorting across space
on estimated firm quality to quantify the extent to which such sorting accounts for aggregate
firm spillovers.

We estimate a number of different variants of (5) to understand heterogeneity in treat-
ment effects and to make comparisons across different types of spillovers. To investigate
heterogeneous treatment effects, we estimate

yi,k,b,t = ↵i + �B(b),t + ⇢k,t + �0
X

j2Mb,t, 6=i

!ij(Mb,t)↵j + �1↵i

X

j2Mb,t, 6=i

!ij(Mb,t)↵j + "i,b,k,t.

We also investigate a number of “horse race” specifications. For these, we estimate

yi,k,b,t = ↵i + �B(b),t + ⇢k,t + �A
X

j2Mb,t, 6=i

!A
ij(Mb,t)↵j + �B

X

j2Mb,t, 6=i

!B
ij (Mb,t)↵j + "i,b,k,t.

This allows us to determine the extent to which linear-in-means versus agglomeration type
spillovers dominate for a given weighting scheme, to determine which types of connectivity
weights best accommodate each type of spillover, and to determine the spatial extent of
spillovers.

Empirical implementation requires imposing a normalization that assigns the constant
either to each firm’s ↵i or to one set of fixed effects included for identification, �B(b),t or ⇢k,t.
In order to distinguish linear-in-means from agglomeration spillovers, we assign the constant
to ↵i. With this choice, the impact of an additional low quality firm to a peer group raises
peer group quality in the agglomeration specification but reduces peer quality in the linear-
in-means specification, with the spillover parameters scaled appropriately in estimation to
match this normalization. If the constant were not included in ↵i, it would be more difficult
to distinguish these two types of spillovers as additional firms could reduce aggregate peer
quality in the agglomeration specification.

3.1 Identification

Identification of our key parameters of interest requires variation in the composition of firms
within blocks that is unrelated to unobservables driving outcomes. The empirical setup we
adopt from Arcidiacono et al. (2012) uses such identifying variation in a way that accom-
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modates the classic identification challenge of sorting on fixed unobserved attributes. In our
context, such sorting would occur if particularly productive or high paying firms located in
certain blocks because of block attributes that promote such productivity rather than because
of productivity spillovers. For example, more productive firms may be the high bidders for
commercial real estate near train stations and highway interchanges because of their workers’
higher values of commuting time, thereby inducing a correlation between average outcomes
of firms in a block that is not causal. If fixed components of neighbors’ outcomes are uncor-
related with shocks to firm i’s outcomes, then we can identify � in (5) directly by nonlinear
least squares even while excluding industry-time and location-time fixed effects. Firm fixed
effects would be separately identified given variation over time in the composition of firms
in blocks. The spillover parameter would be identified from relationships between firm out-
comes yi,k,b,t residualized for firm fixed effects and the weighted aggregate of neighbors’ fixed
effects in the firm’s block.

Our baseline conceptualization of the data generating process in (5) incorporates location
fixed effects as controls for two reasons. First, we think about spillovers as accruing from
fundamental fixed attributes of neighboring firms rather than location characteristics them-
selves as they operate through neighboring firms. Appropriate specification of this process
thus requires partialing out the location fixed effects �B(b),t. Second, local shocks may be a
driving force for the location choice of firms, even conditional on their ↵is. We are concerned
with the possibility that certain types of locations receive shocks that both attract better
firms and directly impact incumbent firm outcomes. That is, neighborhood trends in firm
productivity, output demand, or labor supply conditions may predict both changes in firm
composition (the mix of ↵js) and changes in the productivity of incumbent firms ("i,k,b,t).
Given that the key source of identifying variation in the empirical work comes from firm
entry and exit to and from blocks, we must clean out any such unobservables that predict
both composition changes in neighbors’ fixed effects because of firm turnover and changes in
outcomes for incumbents.

In the main analysis, we use the full sample of firms and blocks in downtown Montreal,
Toronto, and Vancouver and flexibly control for neighborhood-time fixed effects. The lack
of correlation between the fixed effects of entering firms and shocks to incumbent firms thus
hinges on locally thin markets for commercial real estate in these areas. Thin commercial
real estate markets put a constraint on the amount of information firms can act upon when
deciding which building to move into. In one specification, we define neighborhoods as sets
of blocks in areas of 500 square meters, justifying the inclusion of �B(b),t in our empirical
specification discussed above. This controls for secular trends in productivity, demand or
labor supply conditions and is similar to the identification strategy employed by Bayer et al.

11



(2008). The benefit of this approach is that it allows us to recover more broadly based treat-
ment effects and also to have enough variation in the data to explore mechanisms driving the
results through comparisons across different connectivity weights. Moreover, because identi-
fication comes from changes in firm composition, it accommodates some types of unobserved
changes that come from arrivals or departures of multi-location firms.

The key identifying assumption necessary to obtain unbiased estimates of the spillover
parameter is that trends in local economic conditions driving changes in firm composition
and changes in outcomes operate at a broader spatial scale than do the firm spillovers.
Controls for neighborhood-specific nonparametric time trends allows identification to come
from variation in the peer group area in which new firms and relocating firms locate. Once
again, this assumes the existence of sufficiently tight commercial real estate markets at the
neighborhood level such that firms cannot choose the exact block in which to locate within a
small area. In robustness checks, we also consider specifications which add 250 meter radius
fixed effects, accommodating fixed differences in fundamentals across even smaller areas.

3.2 Estimation

Estimation of (5) requires solving a nonlinear least squares problem, as there is a large
number of firm fixed effects that need to be recovered jointly with the spillover parameter �.
We estimate the models outlined above using the iterative algorithm proposed by Arcidiacono
et al. (2012). As long as each peer group has at least one firm that has a non-missing outcome
for at least two periods, all firm fixed effects are identified jointly with �. Moreover, this setup
accommodates missing data on outcomes as long as each firm is observed with non-missing
data at least once.

The nonlinear least square estimator for parameters in our main estimation equation (5)
minimizes the following objective function:4

min
↵,�,⇢,�

X

t

X

i

0

@yi,k,b,t � ↵i � �B(b),t � ⇢k,t � �
X

j2Mb,t 6=i

!ij(Mb,t)↵j

1

A
2

Taking the first-order condition with respect to ↵i yields an updating equation for each ↵i.
Arcidiacono et al. (2012) propose to solve for parameters using a two-step algorithm. In the
first step, the firm fixed effects are taken as given and estimates of �, �B(b),t and ⇢k(i),t are
obtained by a standard fixed effect estimator. In the second step, �, �B(b),t and ⇢k,t are taken

4
In some variants of our analysis, we replace � with �0 + �1↵i. In other variants of our analysis, we

replace �
P

j !ij(Mb,t)↵jwith �A
P

j !ij(Mb,t)A↵j + �B
P

j !ij(Mb,t)B↵j , where !ij(Mb,t)A and !ij(Mb,t)B

are defined to capture linear-in-means vs. agglomeration effects, different connectivity weights within linear-

in-means, or different spatial extents of spillovers within linear-in-means or agglomeration type spillovers.
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as given and new estimates of the firm fixed effects are obtained using first order conditions.
After a number of iterations, this procedure converges to the nonlinear least square solution.
We initialize ↵i to be estimates from a regression of yi,k,b,t on firm, local area-year and 2-digit
industry-year fixed effects, assigning the constant to ↵i. We use a symmetric wild bootstrap
(MacKinnon, 2006) to calculate standard errors.

4 Data

4.1 Data Sources and Sample

Our primary data source is administrative data on all incorporated firms in Canada between
2001 and 2012. Our data set is derived from T2 Corporation Income Tax Return files. All
corporations have to file a T2 return every year, even if there is no tax payable. The T2
files contain information on firm revenues, expenses, and assets. Additional information on
payroll and employment is derived from linked firm records on employment remuneration
(Form T4). This data set is particularly well suited for our analysis because it includes
six-character postal code identifiers and distances between postal code centroids in 25 meter
bands up to one kilometer. Canadian postal codes in the central areas of cities usually cover
blockfaces or individual buildings.

We process the firm information to keep only firm-years in the Montreal, Toronto and
Vancouver CMAs with some evidence that the firm is operating. We focus on using infor-
mation about sales of goods and services (revenue), employment, and payroll as these are
required reporting lines in the corporate tax filings. We exclude firm-years with none of these
three items reported. We also drop firms that cycle back and forth between postal codes,
firm-years with missing location information, and firms with no 4-digit industry information.
If any of these selections generates a hole in a firm’s individual panel, we drop the entire firm.
We identify a firm’s entry and exit years as the first and last years it has positive reported
revenue. We do keep some firms that have missing revenue in the middle of their panel as
positive employment and/or payroll provides evidence that they were operating. Because we
only observe one postal code per firm, we restrict our attention to firms that have a single
location in each year we observe them. As firms are defined as tax reporting units, many
acquired firms and subsidiaries are kept in our data since they report as separate tax entities.

Table 1 presents summary statistics on the firms in our data. Columns 1 and 2 show
statistics for firms in all industries and Columns 3 and 4 show those for the 42% of firms that
are in high skilled services, the largest 1-digit sector by firm count. The next biggest sector is
recreation, accommodation and food services (NAICS 7). We elected not to include NAICS
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7 firms because their demand conditions commonly varies at a microgeographic scale.5 The
typical NAICS 5 firm in Montreal, Toronto or Vancouver is smaller than the average firm
with lower revenue and fewer employees but higher payroll per worker. In particular, it has
an annual revenue of about CAD 850,000 and 4 employees, with a typical worker earning
about CAD 48,000. Single-location firms are small and their indivdual movement is unlikely
to influence local factor prices.

We construct two different estimation samples using the information on single location
firms operating in NAICS 5 industries. We endeavor to isolate peer groups of firms whose
centroids are contained within 75 a meter radius. We first group postal codes by this criterion,
fully segmenting each of the three CMAs in our data. We exclude all such groups that either
have at least one member postal code with an area that is greater than ⇡752sq meters (0.018 sq
km) or have fewer than 2 firms in any year 2001-2012. We iterate to additionally exclude peer
group areas which include firms for which 500 meter by year fixed effects or 2-digit industry
by year fixed effects are not identified at any point in their history. This is our robustness
sample. Our main estimation sample additionally excludes firms that have missing revenue
information within their panel, and their associated peer groups if this puts them below 2
firms.

The resulting samples have 269,144 and 216,704 firm-year observations respectively. The
smaller of the two has about 6,000 postal codes and 3,000 peer groups in each year with
an average peer group size of 6.5 firms. We cover about 25% of single location NAICS 5
firms in the three CMAs, with the exclusions primarily due to firms being in peer groups
that have fewer than 2 firms and in postal codes that are too large. Indeed, the average
single location NAICS 5 firm is in a postal code with a radius of 169 meters and is in a peer
group of 2.1 firms. We cover firms that are in the denser areas of the three cities. Firms in
our estimation sample also are somewhat larger than all single location NAICS 5 firms at
about CAD 1.3 million per year with 5 employees. Figure 1 Panel A shows the distributions
of firm log revenue in Sample 1 as compared to all single-location NAICS 5 firms. Figure
1 Panel B shows the distributions of peer group sizes in our estimation sample and for all
such firms. Importantly, the distribution of peer group size is highly skewed to the right,
with the largest peer groups having about 125 members. This dispersion in peer group size
means that we have sufficient independent variation in aggregate and mean peer quality to
separately identify linear-in-means from agglomeration spillovers.

Figure 1 Panels C and D show the distributions of average and aggregate peer log revenue
respectively. Average peer revenue for our estimation sample has close to a lognormal distri-

5
Many studies of agglomeration focus on manufacturing, which accounts for only about 10% of firms in

our study area.
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bution, which is smoother than that for the full population of single location NAICS 5 firms.
Aggregate peer log revenue is highly skewed, as should be expected given the distribution of
peer group size.

Evidence in Figure 2 shows the extent to which firms sort into peer groups on revenue.
Panel A shows that above the median, there is positive sorting on the mean log revenue of
firm peers. Panel B shows that the same is true for the aggregate log revenue of peers, with
a huge bump in the right tail of the distribution, meaning that the very high revenue firms
tend to be located in highly agglomerated areas. In Section 6 below, we revisit relation-
ships like this after accounting for the component of revenue due to spillovers to see that
firms do sort on fundamental peer quality as well in both dimensions (↵i is correlated with
P

j2Mb,t 6=i !ij(Mb,t)↵j).

4.2 Connectivity Weights

Our framework allows for cross-firm productivity spillovers that are mediated through indus-
try input-output relationships and occupational similarity. We develop connectivity weights
!ij(Mb,t) with two key attributes. The first characterizes the type of spillover we consider,
either linear-in-means or unscaled aggregation (agglomeration). The second attribute de-
scribes how we capture linkages between industries. To evaluate the relative importance of
different mechanisms driving spillovers, we run “horse races” between aggregations of peer
↵js under various different weighting schemes.

In the first regard, we consider connectivity weights that are of the form

!ij(Mb,t) =

8
<

:

!ij

|Mb,t|�1 in the linear-in-means model

!ij in the agglomeration model

That is, weights are normalized to sum to some fraction of the number of firms in the peer
group in the linear-in-means model and are unconstrained in the agglomeration model.

In the second regard, we consider the following options for industry pair weights. As
a baseline, we use “basic weights” in which !BASIC

ij = 1 as a benchmark against which we
evaluate other types of connections.

Similar to Greenstone et al. (2010), we also test whether firms in the same 2-digit industry
generate differential spillovers to those in other 2-digit industries. In this case, !SAME

ij = 1 if
k(i) = k(j) at the 2-digit NAICS level and 0 otherwise and !OTHER

ij = 1� !SAME
ij .

Following Ellison et al. (2010), we build input-output weights using the Basic Price version
of the 4-digit NAICS 2015 Statistics Canada input-output table. Consistent with other papers
in the literature, these weights are defined as the maximum of upstream and downstream

15



input and output shares

!ij
IO = max[Inputk(i),k(j), Inputk(j),k(i),Outputk(i),k(j),Outputk(j),k(i)].

Finally, we build occupational similarity measures using the 2002 National Industry Occu-
pation Employment Matrix, which is built from Occupational Employment Statistics survey
data. This survey is conducted by the US Bureau of Labor Statistics. For each industry,
it gives the share of employees in each four-digit occupation. We define our occupational
similarity weights as follows:

!OCCSIM
ij = max[Corr(Occ. Sharek(i),Occ. Sharek(j)), 0]

Weights are intended to capture both relative and absolute connectivity between firms.
It is for this reason that we scale the linear-in-means weights to sum to

P
j 6=i !ij

|Mb,t|�1 rather than 1

for firm i. In the following section, we discuss results of “horse races” in which IO or OCCSIM
weights are run against basic weights in a linear-in-means context. If weights and firm quality
are uncorrelated, that is E (wij↵j) h E (wij)E (↵j), we can interpret spillover parameters in
these horse races as follows:

(�BASIC + �W!̄W
ij )

|Mb,t|� 1

X

j 6=i

↵j

That is, the sign of �W indicates whether this weight adds to or reduces the mean peer
quality spillover. For the case in which we run a horse race between !SAME

ij and !OTHER
ij , the

resulting spillover is the weighted average of the two estimated spillover parameters.

5 Results

5.1 Main Estimates

Table 2 presents our main results. The first two rows present estimates of �LIM and �Agg

for separate and horse race specifications of the model, respectively. The central result is
that �LIM is a statistically significant 0.016 and �Agg is close to 0 (with a point estimate that
is slightly negative). That is, we find robust evidence that linear-in-means type spillovers
quantitatively dominate agglomeration spillovers at small spatial scales. As the estimates
are identical whether the coefficients on peer group aggregates are estimated separately or
simultaneously, we conclude that we have independent identifying variation for the two types
of aggregators. This allows us to dig further into the mechanisms driving the linear-in-means
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results using horse races across weights below.
We can interpret the linear-in-means results in two ways. First, an approximate doubling

of average peer quality leads to a 1.6 percent increase in firm revenue. If firms are not
price-takers this implies an even greater increase in firm TFP. As the standard deviation in
average peer quality is about 1 (at 1.10, Column 3), this is also approximately the impact
of increasing peer quality by one standard deviation. Equivalently, this estimate can be
interpreted as saying that absent endogenous effects, peers’ attributes are 1.6% as important
as a firm’s own attributes for determining revenue – with a greater fraction for TFP.6

Table 2 Column 4 shows the implied average fraction of revenue explained by spillovers.
It is calculated as Column 1 multiplied by Column 2. We emphasize that the resulting 19% is
well outside of the support of the data. Our assignment of the constant to ↵i rather than one
of the other fixed effects means that average peer quality is not below 7 for any observation
in our data. We report this number as a benchmark for comparison across linear-in-means
specifications rather than as an indicator of the fraction of revenue we infer comes from
spillovers. Column 5 reports the implied difference in the fraction of revenue accounted for
by spillovers in the 90th percentile firm relative to the 10th percentile firm. This 90-10 gap
of 4.6 percent shows a wide range of spillovers across firms depending on the environment.
Recall evidence in Figure 2 Panel A showing that high quality firms tend to colocate, which is
part of what generates this dispersion. Moreover, we find treatment effects that are increasing
in firm quality (unreported).

The near 0 agglomeration estimates reported in Columns 6-10 should be viewed in the
context of the inclusion of 500 meter radius region-year fixed effects.7 Our estimates cannot
rule out the existence of aggregate increasing returns at higher levels of spatial aggrega-
tion. Sharing of inputs provided at high minimum efficient scales, sharing of output markets,
and labor market pooling are all likely to operate at spatial scales at or above 500 meter
radius regions. As such, we interpret our microgeographic scale results as primarily reflect-
ing knowledge flows rather than these other forces. Of the forces driving agglomeration

6
To see this result, consider the following data generating process from the peer effects literature, as in

Gibbons et al. (2015), expressed for one cross-section:

y = X�x +WX�x + u (6)

This is the linear-in-means equal weights model with M members of the peer group. W is an MXM matrix

in which each off-diagonal element is
1

M�1 and the diagonal elements are 0. Connecting this equation to

our conceptual framework, relabel Xi�x as ↵i so � ⌘ �x
�x

. Because � is fully identified through variation in

peer group composition, any potential endogenous effects would be transitory and be part of the error term.

Therefore, if peer group composition is uncorrelated with the error term, � does not include endogenous

effects.
7
Preliminary bootstrapped standard error estimates indicate that both estimation and robustness sample

agglomeration results are marginally significant at the 5% level.
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economies, knowledge transfers may be more likely to occur as a function of average than
aggregate peer group quality.

Results in the third and fourth rows of Table 2 are estimated off of a broader sample that
includes firms with missing revenue information in the middle of their individual panels. The
inclusion of these firms has the advantage of capturing more of the economic activity at the
cost of including firms that might have temporarily ceased operation for a few years. Firm-
years with no revenue can impart spillovers on other firms (via fixed effects estimated off of
nonmissing observations from other years) but not receive spillovers. These robustness sample
linear-in-means results are a little bit larger than the main estimation sample results, perhaps
because including more potential peers reduces measurement error in peer composition. The
associated agglomeration estimate turns slightly positive but remains small at 0.003%. As
including all firms may be more important for the agglomeration aggregator, we have more
confidence in this slightly positive estimate.

Results in the fifth and sixth rows of Table 2 give a sense of the extent of sorting on
location fundamentals. This “simple” specification excludes 500 meter radius-year fixed ef-
fects from the estimation equation. The fact that estimates of �LIM and �Agg, 0.025 and
0.00005 respectively, are both larger reflects positive sorting of higher quality firms into more
productive and denser locations. This echoes the descriptive evidence in Figure 2. 500 meter
area fixed effects are key controls to account for such sorting across space.

Results in the final two rows of Table 2 are for a more saturated specification that addi-
tionally includes 250 meter radius fixed effects. These controls for fixed attributes of smaller
regions do not affect LIM estimates but do push the agglomeration estimates even closer
to 0. Based on this and evidence from an alternative robustness specification in which 500
meter-year fixed effects are interacted with two-digit industry, we conclude that we have
imposed sufficiently detailed fixed effects to successfully achieve identification.

5.2 Spatial Decay

Table 3 presents results that speak to the extent to which estimates decay spatially. To
look at this, we estimate specifications identical to those in Table 2 except with peer group
radii extended to 125 or 250 meters. Resulting sample sizes are 26 and 75 percent larger
respectively, as larger radii have the potential to include more firms in each group, leading to
more groups meeting the 2 high skilled service sector firm minimum threshold. Average peer
group size grows from 6.5 for 75 meters to 6.9 at 125 meters and 8.3 at 250 meters radii. We
stop at 250 meters in order to maintain enough groups within 500 meter radius fixed effects.

Linear-in-means results in Table 3 show a lot of stability out to 250 meters while agglom-
eration results are even closer to 0 than for the 75 meter radius. While the estimated spillover
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parameter is informative, to fully understand the meaning of these results, we also need to
account for changes in estimated firm quality. As we expand the peer group size, estimates
of ↵i tend to fall.8 This likely comes through a selection effect, that the number of firms in
the sample rises as we expand the peer group radius, thereby including firms located in less
dense areas. With positive sorting on density, this reduces the average quality of firms in the
sample. Putting the spillover parameters together with the average peer group quality, we
see in Table 3 Column 4 that the fraction of revenue due to spillovers falls for the average
firm with increases in peer group radius. Another way to quantify spatial decay is to evaluate
the impact of increasing one peer’s ↵j by one standard deviation. This calculation results in
growth of 0.49 percent within a 75 meter radius and 0.35 percent within the two larger radii.
If anything, the agglomeration results show full decay within 125 meters.

Finally, we estimate horse races between peer groups of 250 and 75 meter radii. We
operationalize this by running a horse race between aggregators with two different weights.
The first assigns a “basic” weight of 1 to all firms. The second assigns a weight of 1 only to
those firms in the same 75 meter radius peer group, nested inside the 250 meter radius peer
group. These results are in progress.

5.3 Weights

The domination of linear-in-means over agglomeration spillovers leads us to focus only on
the former in evaluating causal mechanisms through looking at different weights. Table 4
presents results of horse races between two weights at a time. The first two rows show basic
weights against occupational similarity and input-output weights, respectively. The third row
shows these two weights against each other. The fourth row looks at own 2-digit industry
versus other 2-digit industry. With basic weights set as the first weight, the interpretation of
the second spillover parameter is in how much additional impact the associated mechanism
has.

Results in the first three rows of Table 4 show that if anything occupational similarity
is more likely to be driving the linear-in-means results than are input-output relationships.
Relative to a benchmark with equal weights, however, both types of connections have neg-
ative additional impacts. Because the two sets of weights are scaled differently, the average
treatment impact in Column 9 is more informative than �B for quantifying the importance
of these different types of connections. Occupational similarity adds -0.02 and input-output
relationships add -0.04 to the baseline with equal weights. The horse race between occupa-
tional similarity and input-output weights in the third row shows that occupational similarity

8↵̄i falls from 11.84 for the 75 meter radius to 11.79 for the 125 meter radius and 11.61 for the 250 meter

radius.
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wins.
Results in the final row of Table 4 speak to the relative importance of localization and

urbanization economies in high skilled services. Here, �A and �B can be compared, as the two
weights are both scaled as dummy variables. These estimates show that firms in other 2-digit
industries within high skilled services impart greater spillovers than those in the same 2-digit
industry. With about two-thirds of peers being in different 2-digit industries on average, the
total spillover is 14 percent from firms in other industries and only 5 percent from firms in the
same industry. This evidence is consistent with that in Henderson et al. (1995) that young
innovative industries benefit more from cross-industry spillovers and contrasts with evidence
for manufacturing in Greenstone et al. (2010).

The picture painted by our evidence on mechanisms is as follows. Some but not all of
the benefit firms accrue from proximity is via interactions between their workers. This is
likely knowledge transfer but could be simple incentives to work hard, as in Cornelissen
et al. (2017)’s evidence about within firm work groups. The potential for new knowledge
acquisition is greater between different industries with similar worker task requirements than
within the same industry.

6 Firm Sorting and Agglomeration Economies

In this section, we document the extent of sorting on firm quality across space and evaluate the
extent to which sorting of firms across space matters for both the distribution of spillovers
and aggregate spillovers. We carry out this analysis by applying our spillover and firm
quality (↵i) estimates from Table 2 to two counterfactual spatial distributions of firms. In
the first counterfactual, we assess the importance of sorting on firm quality while holding
density (peer group size) constant. Second, we additionally assess the role of firm density for
generating the distribution of spillovers. All exercises use estimates of the spillover parameter
� and firm-specific quality ↵i reported in the third row of Table 2. We use estimates from
the “robustness” sample because this broader sample is more inclusive and produces better
agglomeration results.

Results indicate that while there is positive sorting on firm quality and density, this
sorting does not account for a large fraction of the additional aggregate revenue that can
be attributed to spillovers. Our calculations indicate that absent any sorting across space,
aggregate firm revenue would be 1.4 percent lower, with 0.8 of this coming from agglomeration
effects and the remainder coming from linear-in-means effects. Half of this total effect is from
variation in firm density across space and half is from sorting conditional on peer group size.
The aggregate importance of sorting is similar for linear-in-means and agglomeration type
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spillovers. That is, as a fraction of the treatment effect of spillovers, sorting plays a much
larger role for agglomeration than linear-in-means spillovers. But the aggregate impact of
sorting is small. As a result, we conclude that sorting mostly occurs on location fundamentals:
higher quality locations (those with larger �B(b),t) attract higher quality firms. But the higher
quality firms impart only slightly larger spillovers on their neighbors.

Figure 3 documents the relationship between estimated firm quality b↵i and the size of
the treatment imparted through spillovers enjoyed by firm i. Panel A shows the demeaned
linear-in-means treatment

d�LIM

1�|Mb,t|
P

j✓Mb,t, 6=i
[↵LIM
j and Panel B shows the demeaned agglom-

eration treatment d�Agg
P

j✓Mb,t, 6=i
d↵Agg
j . Results in Panel A show a monotonic and near linear

relationship between average peer quality and firm quality. The lowest quality firm receives
a treatment that is about 0.02 less than the highest quality firm on average. With a standard
deviation in peer quality of 1.1 (from Table 2), this is less dispersion than can be explained
from all the variation in the data in peer quality. Panel B shows much less dispersion in
agglomeration treatment impacts across firms of different quality. This profile is much more
bimodal, with below average quality firms typically getting about 0.002 less in treatment than
above average quality firms. This bimodalism reflects differences in the spatial distribution of
firms. The broader message is that higher quality firms do benefit from greater spillovers by
sorting into areas with other higher quality firms. But the associated magnitudes are small.

Figure 4 presents counterfactual treatment distributions relative to actual treatment dis-
tributions under our two sorting scenarios. For Counterfactual 1, we randomly allocate
firms to fixed locations across space. This exercise is akin to that in Duranton and Over-
man (2005), who examine how much less localized firms in particular industries would be
if allocated randomly to fixed locations across UK postal codes. For Counterfactual 2, we
additionally impose that all peer groups are of the same size. This allows us to see the impact
of variations in density on aggregate spillovers. Results in panel A show two almost perfectly
symmetric distributions around 0. This means that about half of firms experience increased
linear-in-means spillovers and half of firms experience reduced such spillovers absent sorting
across space. Getting rid of dense concentrations increases the variance in these impacts a bit
but otherwise has little impact. Figure 4 Panel B shows different counterfactual effects under
aggregate spillovers. While given fixed locations, there is a symmetric impact of randomly
shuffling firms, the impact of getting rid of dense concentrations (Counterfactual 2) is mostly
negative.

Results in Figure 5 display how these impacts of sorting differ by firm quality. The
linear-in-means results in Panel A show that the lowest quality firms benefit the most, by up
to 0.01, by imposing random peers. This impact declines approximately linearly with firm
quality down to a negative impact of -0.01 for the highest quality firms. These magnitudes
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are very similar to the relative relationships between firm quality and average peer quality in
Figure 3. Under Counterfactual 1, Figure 5 Panel B shows very small impacts with expected
signs under agglomeration models. Once again, low quality firms benefit and high quality
firms are hurt by randomly shuffling all firms across fixed locations. However, flattening the
density gradient is bad for all firms, though it is worse for the highest quality firms. Under
this second counterfactual, average firm revenue declines by about 0.4%-0.6% across the full
distribution of firm quality.

The aggregate impact of sorting on revenue through spillovers is small. We compute this
by aggregating revenue under the two counterfactual scenarios and comparing it to total
observed firm revenue. We carry out this calculation as follows for each counterfactual c and
peer group Mi:

lnY c = ln

"
X

i

exp(yi + �[M c
i �Mi])

#

That is, we calculate aggregate revenue in the counterfactual environment in which peer
group quality Mi is replaced by peer group quality M c

i . This way of calculating impacts
of sorting is not sensitive to the normalization of firm fixed effects, as any normalization
differences out in M c

i �Mi. The top row of Table 5 shows the linear-in-means version, where
MLIM

i = 1
1�|Mb,t|

P
j✓Mb,t, 6=i

[↵LIM
j and the second row shows agglomeration version, where

MLIM
i =

P
j✓Mb,t, 6=i

d↵Agg
j . Comparison against aggregate revenue lnY = ln [

P
i e

yi ] shows
how much aggregate revenue would be impacted if there were no sorting across locations.
That is, this integrates plots in Figure 5 over the distribution of firm quality to determine
aggregate impacts. Given our evidence that linear-in-means and agglomeration effects are
additive, we add up the total impact in the bottom row.

Results show that under Counterfactual 1, aggregate revenue would decrease by 0.38%
through linear-in-means channels and 0.33% through agglomeration channels. This reflects
mild positive sorting of higher quality firms into peer groups. Harmonizing the size of each
peer group to be the same reduces revenue by an additional 0.24% through linear-in-means
channels and 0.47% through agglomeration channels. The linear-in-means result reflects the
mean-preserving spread seen in Figure 4. The agglomeration result reflects the reduction in
peer group size experienced by the average firm. The total impact is 1.4 percent of revenue.

7 Conclusions

Considerable evidence from metropolitan area level spatial scales exists on the magnitude of
aggregate increasing returns to scale. Yet little empirical evidence exists at microgeographic
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spatial scales. Evidence in this paper shows that firms benefit from being near higher quality
peers. In particular, the elasticity of firm revenue and TFP with respect to the average
quality of other firms within 75 meters is 0.016-0.018. However, after conditioning on 500
meter radius areas, the average firm benefits at most only marginally from being surrounded
by a greater amount of economic activity within 75 meters. That is, to the extent that scale
matters, it is the amount of activity in regions of 500 meter radius or larger that is mostly
important, not the very local scale. However, because of the huge amount of dispersion in
density, firms in the most dense locations benefit considerably from being in these locations.

Occupational similarity relationships are more important drivers of linear-in-means spillovers
than input-output relationships at this small spatial scale. However, spillovers are slightly
larger from other 2-digit industries. This is evidence that knowledge transfer may be more
valuable within occupations but across industries.

With metro level elasticities of TFP with respect to population estimated to be in the
0.03-0.05 range (Combes and Gobillon, 2014), additional mechanisms are required to go
from our micro evidence to the macro evidence. One important aspect held constant in
this study is location fundamentals within 500 meter radius areas. As such, we provide
evidence that a large fraction of aggregate increasing returns to scale operate at higher levels
of aggregation. An important question for future research is how microgeographic estimates
like those reported here aggregate up to the local labor market level.
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Panel A: Distribution of Firm log Revenue Panel B: Distribution of Peer Group Size

Panel C: Distribution of Mean Log Revenue in Peer Groups Panel D: Distribution of Aggregate Log Revenue in Peer Groups

Figure 1: Descriptive Graphs



These graphs use the estimation sample.

Panel A: Mean Peer log Revenue by Firm log Revenue

Figure 2: Sorting on Peer Group Quality

Panel B: Aggregate Peer log Revenue by Firm log Revenue



Graphs are based on the robustness sample results in Table 2.

Figure 3: Relationships Between Estimated Firm and Peer Group Quality

Panel B: Agglomeration Model

Panel A: Linear in Means Model



Graphs are based on the robustness sample results in Table 2.

Figure 4: Impacts of Sorting on Treatment Magnitudes

Panel B: Agglomeration Model, Robustness Sample

Panel A: Linear in Means Model, Robustness Sample



Graphs use the robustness sample results in Table 2.

Figure 5: Impacts of Sorting by Firm Quality

Panel A: Linear in Means Model, Robustness Sample

Panel B: Agglomeration Model, Robustness Sample



Multi Loc Single Loc Multi Loc
Est. Sample

ln Revenue 15.06 12.05 14.50 11.60 12.03
(2.21) (1.98) (2.42) (2.03) (2.03)

ln Payroll Per Worker 10.65 10.13 10.80 10.29 10.47
(0.75) (0.92) (0.87) (0.99) (0.95)

ln Employment 3.11 1.18 2.73 0.92 1.09
(1.56) (1.01) (1.77) (0.94) (1.00)

Area of Postal Code 0.166 0.111 0.050 0.090 0.006
   (sq km) (12.895) (11.313) (0.873) (10.280) (0.005)

# of Firm-Years (Obs) 245 517 2 645 291 78 484 1 075 672 216 704
# of Firms 30 464 428 377 10 643 181 496 44 830
# of Postal Code-Years 153 594 1 100 446 55 075 603 583 64 779
# of Peer Group-Years 128 284 843 305 47 562 501 458 33 580
Avg # in Peer Group 1.9 3.1 1.7 2.1 6.5

Table 1: Descriptive Statistics

Statistics are for all firms in the Montreal, Toronto and Vancouver CMAs for the 2001-2012 period. Panel A shows means with
standard deviations in parentheses. The estimation sample in the final column only includes firms in postal codes with areasless
than 0.018 sq km (p752 sq m) and in peer groups of at least 2 firms. This sample additionally excludes firms with missing revenuein
some yearssurrounded by nonmissing revenuein other years. All samples drop firm-year observations in which revenue is missing
at the beginning or end of the firm's panel.

Single Loc
All Industries

Panel B: Sample Sizes

Panel A: Summary Statistics

High-Skilled Services (NAICS 5)



gLIM & gAgg Mn Avg SD Avg Mn Agg SD Agg
Sample Estimated … Specification gLIM Peer a Peer a Avg. Treat 90-10 Diff gAgg Peer a Peer a Avg. Treat 90-10 Diff

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

Est. Separately Base 0.016 11.84 1.10 0.19 4.6% -0.00003 170.8 202.1 0.00 -1.4%
Est. Jointly Base 0.016 11.84 1.10 0.19 4.6% -0.00003 168.1 198.9 -0.01 -1.7%

Rob. Separately Base 0.018 11.68 1.11 0.21 5.1% 0.00003 190.7 236.7 0.01 1.9%
Rob. Jointly Base 0.018 11.68 1.11 0.21 5.0% 0.00003 187.5 232.7 0.01 1.7%

Est. Separately Simple 0.025 11.74 0.94 0.29 5.9% 0.00005 170.5 202.5 0.01 2.6%
Est. Jointly Simple 0.024 11.74 0.94 0.29 5.9% 0.00005 166.5 197.8 0.01 2.3%

Est. Separately Saturated ~0.017 0.00000 170.4 201.2 0.00 0.2%
Est. Jointly Saturated ~0.017 ~0

Sample sizesfor the estimation (Est.) sample are reported in Table 1. The robustness (Rob.) sample (269,144 observations in 42,110 peer group-years)additionally
includes firms with missing revenueobservations in the middle of their panels. The base specification has 500 meter radius-year and 2-digit industry-year FE. The
Simple specification (217,756 observations in 33,888 peer group-years)drops the 500 meter radius-year FE. The saturated specification (216,634 observations in
33,566 peer group-years) instead adds 250 meter radius FE.

Linear in Means Agglomeration

Table 2: Results for 75 meter Radius Peer Groups



Peer Group gLIM & gAgg

Radius Sample Estimated … gLIM Avg Peers SD Peers Avg. Treat 90-10 Diff gAgg Avg Peers SD Peers Avg. Treat 90-10 Diff
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

75 m Est. Jointly 0.016 11.84 1.10 0.19 4.6% -0.00003 168.1 198.9 -0.01 -1.7%
125 m Est. Jointly 0.013 11.79 1.03 0.15 3.4% -0.00001 208.6 280.5 0.00 -0.9%
250 m Est. Jointly 0.016 11.61 0.92 0.18 3.7% 0.00001 352.6 626.0 0.00 1.2%

125 m Est. Separately 0.013 11.79 1.03 0.15 3.3% -0.00001 211.2 284.0 0.00 -0.7%
125 m Rob. Separately ~0.014 0.00001 235.8 332.4 0.00 1.1%
250 m Est. Separately 0.016 11.61 0.92 0.19 3.8% 0.00001 358.1 635.6 0.00 1.5%

AgglomerationLinear in Means

Table 3: Results for Other Peer Group Radii, Base Specification

Estimates are analogous to those in Table 2, with the only difference being the peer group definitions. Radii listed at left indicate the peer group definition for
each set of results. Sample sizes are 5-10 percent larger than those in Table 2.



Weight A gA Avg Peers SD Peers Avg. Treat 90-10 Diff Weight B gB Avg Peers SD Peers Avg. Treat 90-10 Diff
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

Equal 0.018 11.84 1.10 0.21 5.0% Occ Sim -0.004 3.82 2.26 -0.02 -2.6%
Equal 0.020 11.83 1.10 0.23 5.5% IO -0.113 0.31 0.32 -0.04 -9.3%

Occ Sim 0.007 3.89 2.30 0.03 4.1% IO -0.129 0.32 0.33 -0.04 -10.8%
Same 2-Digit 0.013 3.99 3.51 0.05 11.9% Other 2-Dig 0.018 7.85 3.58 0.14 16.4%

Table 4: Comparison of Different Types of Firm Connections for LIM Results

Note: Results in each row are estimated jointly. All results use the main estimation sample and 75 meter radius peer groups. Summary statistics and
sample sizes are in Table 1. Weighted results for aggregate spillovers are not shown as they are inconclusive.



Model 1 2

Linear in Means 0.38% 0.62%
Agglomeration 0.33% 0.80%

Total 0.71% 1.42%

Counterfactual

Table 5: Aggregate Revenue Reductions
Absent Sorting



Appendix 1 The Monopolistic Competition Case

With market power, each firm charges a markup over marginal cost that depends on the
elasticity of demand it faces for its product. To model this phenomenon, we begin with an
adapted version of the environment considered by De Loecker (2011). In this environment,
CES preferences across firm-specific varieties within 2-digit industry yield industry-specific
demand elasticities that are fixed over time. In particular, the demand faced by firm i can
be written as

qi,b,k,t = Xk,tp
⌘k
i,b,k,te

⇣i,b,k,t .

In this equation, lnXk,t = lnQk,t� 1
⌘k

lnPk,t represents a combination of industry-time specific
demand shocks and the industry-time price index.9 These objects will be controlled for with
fixed effects. ⌘k is the demand elasticity faced by each firm in industry k for its product.
We note that all derivations in this section apply even if ⌘ is firm-specific. ⇣i,b,k,t is an i.i.d
demand shock that is uncorrelated with TFP shocks.

Profit maximization yields the following expression for the firm-year-industry specific
price:

ln pi,b,k,t =� 1

Dk
lnAi,b,k,t +

✓k
Dk

lnwB(b),k,t �
✓k
Dk

(ln
1 + ⌘k
⌘k

+ ln ✓k)

+
1� ✓k
Dk

[lnXk,t + ⇣i,b,k,t]
(7)

where Dk = ✓k(1 + ⌘k) � ⌘k. As ⌘k approaches negative infinity, ln pi,b,k,t goes to lnPk,t by
construction, meaning that firms have no market power. Because ⌘k is always less than �1 for
monopolists and ✓k < 1, the common denominator Dk is always positive. Therefore, positive
productivity shocks depress output prices. Associated negative shocks to marginal costs lead
firms to increase output, moving further down marginal revenue and demand functions. That
is, the more market power firms have, the smaller the pass-through of positive productivity
shocks to price discounts. Similarly, positive wage shocks and positive demand shocks get
passed through to increased prices.

By definition, lnRi,b,k,t = ln pi,b,k,t+ln qi,b,k,t = (1+⌘k) ln pi,b,k,t+lnXk,t+⇣i,b,k,t. Insertion
of (7) into this condition delivers the following general expression for revenue, which is also

9
If preferences are not CES over varieties within industry, we can instead think of Xk,t as representing a

reduced form demand shifter that is common to all products in industry k at time t.
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applicable under perfect competition (when ⌘k = �1)

lnRi,b,k,t =� 1 + ⌘k
Dk

lnAi,b,k,t +
✓k(1 + ⌘k)

Dk
lnwB(b),k,t

� ✓k(1 + ⌘k)

Dk
(ln

1 + ⌘k
⌘k

+ ln ✓k) +
1

Dk
[lnXk,t + ⇣i,b,k,t].

(8)

If the firm is a price taker, this expression matches (2) with no change in price by l’Hopital’s
Rule. As demand for the firm’s product becomes less elastic, revenue becomes more depressed
because the firm is more constrained in its optimal increase in quantity. For example, with
✓k = 0.7 and ⌘k = �2, a 10 percent positive observed revenue change would reflect a 13
percent increase in TFP. With ⌘k = �10 instead, the associated TFP increase is 4 percent,
close to the 3.3 percent response under perfect competition. That is, as firms gain market
power, between firm TFP spillovers measured through revenue shocks are likely to increase.

A.1.1 Structural Interpretation of Revenue Spillovers

Recall that our baseline estimation equation (4) takes the following form

lnRi,b,k,t = ↵R
i + �R

B(b),k,t + �R

2

4
X

j2Mb,t, 6=i

!ij(Mb,t)↵
R
j

3

5+ "Ri,b,k,t.

Inserting equation (3), the data generating process for firm i’s TFP at time t, into the
generalized total revenue equation (8) delivers the structural interpretation of each parameter
in the baseline estimation equation above.

As discussed in Section 2, under perfect competition, the structural interpretation of the
local area-industry-year fixed effects are

�R,pc
B(b),k,t =

✓k
1� ✓k

ln ✓k +
1

1� ✓k
ln pB(b),k,t �

✓k
1� ✓k

lnwB(b),k,t +
1

1� ✓k
�A
B(b),k,t.

Under monopolistic competition, they are interpreted as

�R,mc
B(b),k,t =

�(1 + ⌘k)

Dk
�A
B(b),k,t +

✓k(1 + ⌘k)

Dk
lnwB(b),k,t �

✓k(1 + ⌘k)

Dk,t
(ln

1 + ⌘k
⌘k

+ ln ✓k)

+
1

Dk
lnXk,t,

where Dk = ✓k(1 + ⌘k) � ⌘k > 0 as above. These fixed effects capture location and indus-
try fundamentals, spatial variation in variable input prices, industry-specific markups, the
industry-specific production technology, and industry demand conditions, respectively.
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The structural interpretation of ↵R
i is determined jointly by the firm-specific fixed effect

term and the spillover term. If the firm-specific fixed effect in (4) is set to ↵R
i =

�(1+⌘k(i))

Dk(i)
↵A
i ,

the remaining terms in (4) are

�R
X

j2Mb,t, 6=i

[!ij(Mb,t)↵
R
j ] + "Ri,b,k,t =

�(1 + ⌘k(i))

Dk(i)
�A

X

j2Mb,t, 6=i

[!ij(Mb,t)↵
A
j ]

�
(1 + ⌘k(i))

Dk(i)
"Ai,b,k,t +

⇣i,b,k,t
Dk(i)

.

If firm i is in the same industry as all its peers, revenue spillovers �R directly measure TFP
spillovers �A.

Appendix 2 Alternative Specifications

We employ two strategies to accommodate differences within peer groups in markups and
input shares in order to recover estimates of TFP spillovers.

Our first strategy divides both sides of (8) by 1+⌘k
⌘k�✓k(1+⌘k)

to build the adjusted revenue
measure ln R̃i,b,k,t for use as an outcome. Inserting (3) into (8), we have the following alter-
native structural estimation equation:

ln R̃i,b,k,t = ↵A
i + �̃B(b),k,t + �A

2

4
X

j2Mb,t, 6=i

!ij(Mb,t)↵
A
j

3

5+ "̃i,b,k,t. (9)

This adjustment allows us to isolate firm fixed effects as the permanent firm-specific compo-
nent of TFP and the TFP spillover parameter �A is then directly estimated.

The new structural interpretation of the fixed effects in (9) is

�̃B(b),k,t = �A
B(b),k,t � ✓k[lnwB(b),t + ln

1 + ⌘k
⌘k

+ ln ✓k]�
1

1 + ⌘k
lnXk,t

and the error term in (9) is

"̃Ri,b,k,t = "Ai,b,k,t �
⇣i,b,k,t
1 + ⌘k

.

Following De Loecker and Eeckhout (2018), we calculate the industry level markup in the
data using ⌘k

1+⌘k
= ✓k

Rk
(wL)k

, where ✓, R and wL are aggregated from firms to the industry
level. As a second alternative strategy, we use a direct measure of firm-year TFPR as an
outcome. This strategy has the disadvantage of not separating out impacts on prices from
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quantities, thereby delivering underestimates of TFP spillovers.

A.2.1 Measuring Factor Shares, Markups, and TFP

Our robustness analysis that explicitly accounts for firm-specific price endogeneity requires
measures of variable factor shares and markups. We construct information on payments
to labor, materials, capital, and real estate, where we treat labor and materials as variable
factors.

Payments to labor and materials are observed directly in the data. We infer payments to
capital as rental and repair costs plus the book value of capital (net of amortization) times
a discount rate plus depreciation rate. We set the discount rate to be the Bank of Canada
prime rate plus 0.04 minus the inflation rate. We infer payments to real estate as building
maintenance costs plus property taxes plus rent plus the value of buildings and land (net of
amortization) times a mortgage rate plus depreciation rate minus a capital gains rate. The
mortgage rate is the prime rate plus 0.02. The depreciation rate is nonzero for structures
only and is reported by Statistics Canada for each 2-digit sector. The capital gains rate uses
the CMA level Teranet residential home price index.

We calculate the 2-digit industry-specific markup as

⌘k
1 + ⌘k

= ✓k
Rk

(wL)k
.

We calculate the output elasticity with respect to factor f , ✓fk , by factor costs across all firms
in each 2-digit industry bin, where the variable factor share ✓k is calculated as ✓materials

k +✓labork .
Aggregate revenue Rk and payments to labor and materials (wL)k are observed directly in
the data. Here, ⌘k is the demand elasticity faced by firms in industry k.10

We calculate TFPR as the following residual

TFPRi,b,k,t = lnRi,b,k,t �
X

f

✓fk(w
fF f )i,b,k,t

where wfF f is the payments to factor f . We choose this method for estimating TFP rather
than more sophisticated ones, as in Ackerberg et al. (2016) or Gandi et al. (2020), because
we want to allow for year to year changes in semi-flexible inputs as a result of changes in peer
group composition. Critically, this measure includes prices and thus we expect it to respond
less than revenue to increases in TFPQ.

10
We also experimented with using firm-specific markups but found them to be too noisy to be of use in

estimation.
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